The $p$-adic gamma measures
HTML articles powered by AMS MathViewer
- by Jack Diamond
- Proc. Amer. Math. Soc. 75 (1979), 211-217
- DOI: https://doi.org/10.1090/S0002-9939-1979-0532138-1
- PDF | Request permission
Abstract:
The p-adic log gamma function and its derivatives are used to define distributions and measures on the p-adic units. These measures are then used to interpolate the Leopoldt-Kubota p-adic L-functions on the positive integers.References
- Jack Diamond, The $p$-adic log gamma function and $p$-adic Euler constants, Trans. Amer. Math. Soc. 233 (1977), 321โ337. MR 498503, DOI 10.1090/S0002-9947-1977-0498503-9
- Kenkichi Iwasawa, Lectures on $p$-adic $L$-functions, Annals of Mathematics Studies, No. 74, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0360526
- Neal Koblitz, Interpretation of the $p$-adic log gamma function and Euler constants using the Bernoulli measure, Trans. Amer. Math. Soc. 242 (1978), 261โ269. MR 491622, DOI 10.1090/S0002-9947-1978-0491622-3
- Neal Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, Graduate Texts in Mathematics, Vol. 58, Springer-Verlag, New York-Heidelberg, 1977. MR 0466081
- Tomio Kubota and Heinrich-Wolfgang Leopoldt, Eine $p$-adische Theorie der Zetawerte. I. Einfรผhrung der $p$-adischen Dirichletschen $L$-Funktionen, J. Reine Angew. Math. 214(215) (1964), 328โ339 (German). MR 163900
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 75 (1979), 211-217
- MSC: Primary 12B40; Secondary 12B30
- DOI: https://doi.org/10.1090/S0002-9939-1979-0532138-1
- MathSciNet review: 532138