An example concerning parts and Newtonian capacity
HTML articles powered by AMS MathViewer
- by James Li Ming Wang
- Proc. Amer. Math. Soc. 75 (1979), 218-220
- DOI: https://doi.org/10.1090/S0002-9939-1979-0532139-3
- PDF | Request permission
Abstract:
We prove the following theorem: Let $\phi$ be an admissible function with $\phi ({0^ + }) = 0$ and p a nonnegative integer. Then there is a compact set X in the plane and $x \in X$ such that x is a nonpeak point of $R(X)$, \[ \sum {{2^{(p + 1)n}}\phi {{({2^{ - n}})}^{ - 1}}\mathcal {C}({A_n}(x)\backslash P(x)) < \infty ,} \] while $\Sigma {2^{(p + 1)n}}\phi {({2^{ - n}})^{ - 1}}\gamma ({A_n}(x)\backslash X) = \infty$, where ${A_n}(x) = \{ {2^{ - n - 1}} \leqslant |z - x| \leqslant {2^{ - n}}\} ,P(x)$ denotes the Gleason part of $x,\gamma$ the analytic capacity and $\mathcal {C}$ the Newtonian capacity.References
- John Garnett, Analytic capacity and measure, Lecture Notes in Mathematics, Vol. 297, Springer-Verlag, Berlin-New York, 1972. MR 0454006
- Alfred P. Hallstrom, On bounded point derivations and analytic capacity, J. Functional Analysis 4 (1969), 153–165. MR 0243358, DOI 10.1016/0022-1236(69)90028-7
- Anthony G. O’Farrell, Density of parts of algebras on the plane, Trans. Amer. Math. Soc. 196 (1974), 403–414. MR 361795, DOI 10.1090/S0002-9947-1974-0361795-8 —, Analytic capacity and equicontinuity (preprint).
- James Li Ming Wang, Modulus of approximate continuity for $R(X)$, Math. Scand. 34 (1974), 219–225. MR 355079, DOI 10.7146/math.scand.a-11522
- John Wermer, Potential theory, Lecture Notes in Mathematics, Vol. 408, Springer-Verlag, Berlin-New York, 1974. MR 0454033
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 75 (1979), 218-220
- MSC: Primary 46J10
- DOI: https://doi.org/10.1090/S0002-9939-1979-0532139-3
- MathSciNet review: 532139