Some inequalities of algebraic polynomials having real zeros
HTML articles powered by AMS MathViewer
- by A. K. Varma
- Proc. Amer. Math. Soc. 75 (1979), 243-250
- DOI: https://doi.org/10.1090/S0002-9939-1979-0532144-7
- PDF | Request permission
Abstract:
Let ${P_n}(x)$ be an algebraic polynomial of degree n having all real zeros. We set \[ {I_n} = \frac {{{{\left \| {{{P’}_n}(x)\omega (x)} \right \|}_{{L_2}[a,b]}}}}{{{{\left \| {{P_n}(x)\omega (x)} \right \|}_{{L_2}[a,b]}}}}.\] In this work the lower and upper bounds of ${I_n}$ are investigated under the assumptions that all the zeros of ${P_n}(x)$ are inside $[a,b]$ and outside $[a,b]$, respectively. We restrict ourselves here with two cases, (1) $\omega (x) = {(1 - {x^2})^{1/2}},[a,b] = [ - 1,1]$; (2) $\omega (x) = {e^{ - x/2}},[a,b] = [0,\infty )$. Results are shown to be best possible.References
- P. Erdös, On extremal properties of the derivatives of polynomials, Ann. of Math. (2) 41 (1940), 310–313. MR 1945, DOI 10.2307/1969005
- G. G. Lorentz, The degree of approximation by polynomials with positive coefficients, Math. Ann. 151 (1963), 239–251. MR 155135, DOI 10.1007/BF01398235
- P. Turan, Über die Ableitung von Polynomen, Compositio Math. 7 (1939), 89–95 (German). MR 228 A. K. Vanna, An analogue of some inequalities of P. Turán, Proc. Amer. Math. Soc. 65 (1976), 305-309.
- A. K. Varma, An analogue of some inequalities of P. Turán concerning algebraic polynomials having all zeros inside $[-1,+{}1]$. II, Proc. Amer. Math. Soc. 69 (1978), no. 1, 25–33. MR 473124, DOI 10.1090/S0002-9939-1978-0473124-9
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 75 (1979), 243-250
- MSC: Primary 26D05; Secondary 26D10
- DOI: https://doi.org/10.1090/S0002-9939-1979-0532144-7
- MathSciNet review: 532144