SOME RESULTS CONNECTED WITH
A PROBLEM OF ERDŐS. II

HARRY I. MILLER¹

ABSTRACT. It is shown, using the continuum hypothesis, that if E is an uncountable subset of the real line, then there exist subsets \(S_1 \) and \(S_2 \) of the unit interval, such that \(S_1 \) has outer Lebesgue measure one and \(S_2 \) is of the second Baire category and such that neither \(S_1 \) nor \(S_2 \) contains a subset similar (in the sense of elementary geometry) to \(E \). These results are related to a conjecture of P. Erdős.

1. Introduction. P. Erdős [2] presented the following conjecture at the problem session of the Fifth Balkan Mathematical Congress (Belgrade, June 24–30, 1974):

Conjecture. Let \(E \) be an infinite set of real numbers. Then there exists a set of real numbers \(S \) of positive Lebesgue measure which does not contain a set \(\overline{E} \) similar (in the sense of elementary geometry) to \(E \).

If \(E \) is a finite set of real numbers, then every set of real numbers \(S \) of positive Lebesgue measure contains a subset \(E' \) similar to \(E \). This follows from a result of M. S. Ruziewicz [5] or as P. Xenikakis has shown (in a private communication) from Theorem 3 in [3]. By Theorem 4 in [3], the corresponding result holds for Baire sets \(S \) of the second Baire category (\(S \) is a Baire set if it can be written in the form \(S = (G \setminus C) \cup D \), where \(G \) is an open set and \(C \) and \(D \) are sets of the first Baire category).

H. I. Miller and P. Xenikakis [4] have proven the following two theorems related to the conjecture of Erdős.

Theorem A. If \(A \subset \mathbb{R} \) (the real line) possesses the Baire property and is of the second Baire category in \(\mathbb{R} \) and if \((z_n)_{n=1}^\infty \) is a convergent sequence of reals, then \(A \) contains a set \(A' \) which is similar to the set \(\{z_n; n = 1, 2, \ldots \} \).

Theorem B. If \(A \subset \mathbb{R} \) can be written in the form \(A = (G \setminus C) \cup D \), where \(G \) is a nonempty open set and \(C \) and \(D \) are sets of Lebesgue measure zero and if \((z_n)_{n=1}^\infty \) is a convergent sequence of reals, then \(A \) contains a set \(A' \) which is similar to the set \(\{z_n; n = 1, 2, \ldots \} \).

The purpose of this work is to show, using transfinite induction and the continuum hypothesis, that if \(E \) is an uncountable subset of the real line, then

¹The work on this paper was supported by the Scientific Research Fund of Bosna and Herzegovina.

Received by the editors May 1, 1978.

© 1979 American Mathematical Society
0002-9939/79/0000-0315/$02.00

265

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
there exist subsets S_1 and S_2 of the interval $[0, 1]$ such that $m^*(S_1) = 1$ and S_2 is of the second Baire category in R, and such that neither S_1 nor S_2 contains a subset similar to E. Here m^* denotes outer Lebesgue measure.

2. Results. Our first theorem makes use of the following lemma whose proof can be found in [1].

Lemma A. Let C be a closed subset of the real line. Let B be a subset of C such that B has nonempty intersection with every closed subset of C of positive Lebesgue measure. Then $m^*(B) = m(C)$.

We now proceed to prove our first theorem.

Theorem 1. If E is an uncountable set of real numbers, then there exists a subset S of $[0, 1]$ such that $m^*(S) = 1$ and no subset of S is similar to E.

Proof. Let $\mathcal{Q} = \{Q; Q$ a closed subset of $[0, 1]$ and $m(Q) > 0\}$. By the continuum hypothesis \mathcal{Q} can be written in the form $\mathcal{Q} = \{Q_\alpha; \alpha < \Omega\}$ where Ω denotes the first uncountable ordinal. Similarly \mathcal{E}, the family of all subsets of R similar to E, can be written in the form $\mathcal{E} = \{E_\alpha; \alpha < \Omega\}$. This is true as there are c, the cardinality of the continuum, similarity transformations; since each similarity transformation f is of the form $f(x) = ax + b$. We now proceed to construct two transfinite sequences $\{x_\alpha\}_{\alpha < \omega}$ and $\{y_\alpha\}_{\alpha < \omega}$ of real numbers.

Pick $x_1 \in Q_1$ and $y_1 \in E_1$ such that $x_1 \neq y_1$. Suppose that ω is an ordinal number $\omega < \Omega$ and that $\{x_\alpha\}_{\alpha < \omega}$ and $\{y_\alpha\}_{\alpha < \omega}$ have been selected such that:

(a) $x_\alpha \in Q_\alpha, y_\alpha \in E_\alpha$ for each $\alpha < \omega$, and

(b) $\{x_\alpha; \alpha < \beta\} \cap \{y_\alpha; \alpha < \beta\} = \emptyset$, for every $\beta, \beta < \omega$.

Then we can find $x_\omega \in Q_\omega$ and $y_\omega \in E_\omega$ such that $\{x_\alpha; \alpha < \omega\} \cap \{y_\alpha; \alpha < \omega\}$ is the empty set, since Q_ω and E_ω are uncountable sets and $\omega < \Omega$ implies that ω is a countable ordinal. Therefore by transfinite sequences $\{x_\alpha\}_{\alpha < \omega}$ and $\{y_\alpha\}_{\alpha < \omega}$ such that $x_\alpha \in Q_\alpha, y_\alpha \in E_\alpha$ for each $\alpha, \alpha < \Omega$, and such that $\{x_\alpha; \alpha < \beta\} \cap \{y_\alpha; \alpha < \beta\} = \emptyset$ for every $\beta, \beta < \Omega$. Let S denote the set $\{x_\alpha; \alpha < \Omega\}$. Then $S \subset [0, 1]$ and by Lemma A we have $m^*(S) = 1$.

Furthermore, no subset of S is similar to E. For if some subset, say S', of S is similar to E we have $S' = E'_\gamma$ for some $\gamma < \Omega$. This in turn implies $y_\gamma \in S'$ and hence $y_\gamma \in S$. Therefore there exists $\delta < \Omega$ such that $y_\gamma = x_\delta$ or $\{x_\alpha; \alpha < \beta\} \cap \{y_\alpha; \alpha < \beta\} \neq \emptyset$, where $\beta = \max(\gamma, \delta)$, which is a contradiction.

We need the following lemma in the proof of Theorem 2.

Lemma B. Let \mathcal{Q} denote the collection of subsets of $[0, 1]$ given by the formula

\[\mathcal{Q} = \{(R \setminus \bigcup_{i=1}^{\infty} F_i) \cap [0, 1]|\text{where each } F_i \text{ is a closed and nowhere dense subset of } R\} \]

If B is a subset of $[0, 1]$ and has the property that $Q \cap B \neq \emptyset$ for every $Q \in \mathcal{Q}$, then B is a set of the second Baire category in R.

Proof. If B is a set of the first Baire category, then we have $B \subset \bigcup_{i=1}^{\infty} \text{Cl}(X_i)$, with each X_i nowhere dense in R. This implies that $B \subset \bigcup_{i=1}^{\infty} \text{Cl}(X_i)$, where
Cl denotes the closure operator. From this it follows that \(B \cap (R \setminus \bigcup_{i=1}^{\infty} \text{Cl}(X_i)) = \emptyset \), contradicting the assumption that \(Q \cap B \neq \emptyset \) for every \(Q \in \mathcal{U} \).

Theorem 2. If \(E \) is an uncountable set of real numbers, then there exists a subset \(S \) of \([0, 1]\) with the property that no subset of \(S \) is similar to \(E \) and such that \(S \) is of the second Baire category in \(R \).

Proof. The proof of Theorem 2 is essentially the same as that of Theorem 1. Here we make use of Lemma B and the fact that the family of sets \(\mathcal{A} \) given in Lemma B can, by assuming the continuum hypothesis, be written in the form \(\mathcal{A} = \{Q_\alpha; \alpha < \Omega\} \), where as before, \(\Omega \) denotes the first uncountable ordinal.

3. **Remark.** Professor John C. Oxtoby has observed that Theorems 1 and 2 can be obtained by applying a theorem of Sierpiński [6] which reads:

Theorem C. Given a set \(X \), a family \(\Phi \) of subsets of \(X \), and a group \(G \) of 1-1 mappings of \(X \) onto itself, such that \(\text{card } X = \text{card } \Phi = \text{card } G = \aleph_1 \) and such that \(X \setminus \bigcup_i f_i(H_i) \) is uncountable for each sequence \(\{f_i\} \subset G \) and \(\{H_i\} \subset \Phi \), then there exists an uncountable set \(S \subset X \) with the properties:

- \(H \in \Phi \) implies \(H \cap S \) is countable, and
- \(f \in G \) implies \(f(S) \setminus S \) is countable.

We will sketch Oxtoby’s proof. In the following, let \(\mathcal{E} = \{L; L \) an uncountable subset of \(R \) that contains no uncountable meager subset\} and \(\mathcal{S} = \{S; S \) an uncountable subset of \(R \) that contains no uncountable subset of measure zero\}. Furthermore let \(X = [0, 1], \Psi_1 \) denote all \(G_6 \) nullsets contained in \(X \), \(\Psi_2 \) denote all \(F_\sigma \) meager subsets of \(X \), \(G_1 \) denote all 1-1 Borel measurable and nullset-preserving transformations of \(X \), and \(G_2 \) denote all 1-1 Borel measurable and category-preserving transformations of \(X \). Let \(\mathcal{G} \) denote all sets similar to a given fixed uncountable subset of \(R \). Define

\[
\Phi_1 = \Psi_1 \cup \{E \in \mathcal{E}; E \subset X \text{ and } E \in \mathcal{S}\}
\]

and

\[
\Phi_2 = \Psi_2 \cup \{E \in \mathcal{E}; E \subset X \text{ and } E \in \mathcal{S}\}.
\]

It is easy to verify, by assuming the continuum hypothesis, that the hypotheses of Sierpiński’s theorem are satisfied when we take \(G = G_1 \) and \(\Phi = \Phi_1 \).

The resulting set \(S_1 \subset [0, 1] \) has the following properties:

(i) \(S_1 \in \mathcal{S} \) and hence is nonmeasurable and of the first category on every perfect set;

(ii) \(S_1 \) contains no member of \(\mathcal{G} \);

(iii) \(f \in G_1 \) implies \(f(S_1) \triangle S_1 \) is countable, and

(iv) \(m^*(S_1) = 1 \).

Similarly, taking \(G = G_2 \) and \(\Phi = \Phi_2 \) and by assuming the continuum hypothesis we obtain a set \(S_2 \subset [0, 1] \) with the following properties:
(i) $S_2 \in \mathcal{E}$ and hence is of measure zero and does not possess the Baire property;
(ii) S_2 contains no member of \mathcal{C};
(iii) $f \in G_2$ implies $f(S_2) \triangle S_2$ is countable, and
(iv) S_2 is of the second category at each point of $[0, 1]$.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SARAJEVO, SARAJEVO 71000, YUGOSLAVIA