A theorem on compact locally conformal Kähler manifolds
HTML articles powered by AMS MathViewer
- by Izu Vaisman
- Proc. Amer. Math. Soc. 75 (1979), 279-283
- DOI: https://doi.org/10.1090/S0002-9939-1979-0532151-4
- PDF | Request permission
Abstract:
We prove that a compact locally conformai Kähler manifold which satisfies either: (1) it has nonpositive conformal invariant $\mu$ [2] and its local conformal Kähler metrics have nonnegative scalar curvature or (2) its local conformal Kähler (l.c.K.) metrics have a positive or negative definite Ricci form is a Kahler manifold. We conjecture that every compact l.c.K. manifold which satisfies all the topological restrictions of a Kähler manifold admits some Kähler metric.References
- Thierry Aubin, Variétés hermitiennes compactes localement conformément kählériennes, C. R. Acad. Sci. Paris 261 (1965), 2427–2430 (French). MR 185555
- T. Aubin, The scalar curvature, Differential geometry and relativity, Mathematical Phys. and Appl. Math., Vol. 3, Reidel, Dordrecht, 1976, pp. 5–18. MR 0433500
- Samuel I. Goldberg, Curvature and homology, Pure and Applied Mathematics, Vol. XI, Academic Press, New York-London, 1962. MR 0139098
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
- Izu Vaisman, On locally conformal almost Kähler manifolds, Israel J. Math. 24 (1976), no. 3-4, 338–351. MR 418003, DOI 10.1007/BF02834764
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 75 (1979), 279-283
- MSC: Primary 53C55
- DOI: https://doi.org/10.1090/S0002-9939-1979-0532151-4
- MathSciNet review: 532151