A PROBLEM OF GEOMETRY IN R^n

M. KATCHALSKI AND A. LIU

Abstract. Let \mathcal{F} be a finite family of at least $n + 1$ convex sets in the n-dimensional Euclidean space R^n. Helly's theorem asserts that if all the $(n + 1)$-subfamilies of \mathcal{F} have nonempty intersection, then \mathcal{F} also has nonempty intersection. The main result in this paper is that if almost all of the $(n + 1)$-subfamilies of \mathcal{F} have nonempty intersection, then \mathcal{F} has a subfamily with nonempty intersection containing almost all of the sets in \mathcal{F}.

1. Introduction. A family \mathcal{F} of sets is said to be an I-family if $\bigcap \mathcal{F} \neq \emptyset$. Let \mathcal{F}_i denote the collection of I-subfamilies of \mathcal{F} of size i. In this notation, the classic result of Helly [5] may be stated as follows:

Helly's Theorem. If \mathcal{F} is a family of x convex sets in R^n with $x > n$, then \mathcal{F} is an I-family if $|\mathcal{F}_{n+1}| = \binom{x}{n+1}$. Counterexamples show that the conclusion is false if $|\mathcal{F}_{n+1}| < \binom{x}{n+1}$.

In this paper, we study the maximal I-subfamily of \mathcal{F} when it falls short of the entire family. Greek letters α, ρ, and ω always denote real numbers and, unless otherwise stated, we assume that $0 < \alpha, \rho, \omega < 1$.

Let \mathcal{F} be a family of x compact convex sets in R^n. The compactness condition is introduced only for convenience as we deal with finite families of sets. We assume that $|\mathcal{F}_r| > \alpha(x)$ for some α and r, $n < r < x$. We ask the following questions:

(A) What is the maximal size ρx of an I-subfamily of \mathcal{F}?

(B) Does ρ tend to 1 as α tends to 1?

In R^1 with $r = 2$, Abbott and Katchalski [1] proved that $\rho = 1 - \sqrt{1 - \alpha}$ and that this result is best possible. The answer to question (B) is thus in the affirmative.

In this paper, we shall deal with the problem in R^n in a more general setting. We consider families of p-tuplets in R^n, which are defined as unions of p compact convex sets in R^n. Our main tools are two lemmas which are given in the next section. In §3, we give a lower bound for ρ in answer to question (A).

The special case $p = 1$ is explored further in §4, leading to an affirmative answer to question (B) for compact convex sets in R^n. For p-tuplets with $p > 2$, the answer to question (B) is essentially negative. This is pointed out at the end of §3.
For other related problems, consult the comprehensive paper of Danzer, Grünbaum and Klee [2] and the excellent bibliography section in Hadwiger, Debrunner and Klee [4]. For results on p-tuplets, see Grünbaum and Motzkin [3], Katchalski and Liu [6] and Larman [7].

2. Two lemmas. A family \(\mathcal{F} \) of \(x \) sets is said to have property \((n) \), \(n < x \), if \(\mathcal{F}_n \) is nonempty and there exists a function \(f \) mapping \(\mathcal{F}_n \) into the subsets of \(\bigcup \mathcal{F} \) such that:

1. \(f(\mathcal{A}) \cap (\bigcap \mathcal{B}) \neq \emptyset \) for all \(\mathcal{A} \in \mathcal{F}_n \);
2. if \(\mathcal{B} \) is an \(I \)-subfamily of \(\mathcal{F} \), \(|\mathcal{B}| > n \), then there exists \(\mathcal{A} \in \mathcal{F}_n \) such that \(\mathcal{A} \subset \mathcal{B} \) and \(f(\mathcal{A}) \cap (\bigcap \mathcal{B}) \neq \emptyset \).

Combinatorial Lemma. Let \(\mathcal{F} \) be a family of \(x \) sets with property \((n) \) with \(w = \max \{|f(\mathcal{A})| : \mathcal{A} \in \mathcal{F}_n \} \). If \(|\mathcal{F}_r| > \alpha(\zeta) \) for some \(\alpha \) and \(r, n < r < x \), then \(\mathcal{F} \) has an \(I \)-subfamily of size at least \(t \), where \(t \) is the smallest integer for which \((r - n)(\zeta) > \alpha(\zeta)/w \).

Proof. Define \(g : \mathcal{F}_r \rightarrow \mathcal{F}_n \) in such a way that for \(\mathcal{A} \in \mathcal{F}_r \), \(g(\mathcal{A}) \subset \mathcal{B} \) with \(f \circ g(\mathcal{A}) \cap (\bigcap \mathcal{B}) \neq \emptyset \). Since \(\mathcal{F} \) has property \((n) \), \(g(\mathcal{A}) \) can always be chosen. If more than one choice is possible, a random selection is made.

Now \(|\mathcal{F}_r| > \alpha(\zeta) \) while \(|\mathcal{F}_n| < (\zeta) \). Hence for some \(\mathcal{A} \in \mathcal{F}_n \), \(f(\mathcal{A}) \cap (\bigcap \mathcal{B}) \neq \emptyset \) for at least \(\alpha(\zeta)/w(\zeta) \) of the \(\mathcal{B} \)'s in \(\mathcal{F}_r \). Now \(|f(\mathcal{A})| < w \). Hence for some \(z \in f(\mathcal{A}) \), \(z \) belongs to \(\bigcap \mathcal{B} \) for at least \(\alpha(\zeta)/w(\zeta) \) of these \(\mathcal{B} \)'s. Let \(z \) belong to \(k \) of the sets in \(\mathcal{F} \). Then it can belong to \(\bigcap \mathcal{B} \) for at most \((k - n)/(\zeta) \) of the \(\mathcal{B} \)'s in \(\mathcal{F}_r \). Hence we must have \(k > t \) with \(t \) as given in the lemma. The lemma follows immediately. □

Now let \(A \) be any nonempty compact subset of \(R^n \). Define \(h(A) \) to be the point \((a_1, a_2, \ldots, a_n) \in A \) where

\[
a_1 = \{ \max x_1 : (x_1, x_2, \ldots, x_n) \in A \},
\]

and for \(2 < i < n \),

\[
a_i = \{ \max x_i : (a_1, \ldots, a_{i-1}, x_i, \ldots, x_n) \in A \}.\]

Let \(\Theta \) be the lexicographical order on \(R^n \), that is, \((a_1, a_2, \ldots, a_n) \Theta (b_1, b_2, \ldots, b_n) \) if \(a_i = b_i \) for \(1 < i < n \) or if there exists some \(k < n \) such that \(a_i = b_i \) for \(i < k \) and \(a_k > b_k \). Note that \(h(A) \Theta h(B) \) if \(A \supset B \), and that \(h((a, b]) = b \) in \(R^1 \).

Lexicographical Lemma. Let \(\mathcal{B} \) be a finite \(I \)-family of compact convex sets in \(R^n \) with \(|\mathcal{B}| > n \). Then \(\mathcal{B} \) has a subfamily \(\mathcal{A} \), \(|\mathcal{A}| = n \), such that \(h(\bigcap \mathcal{A}) = h(\bigcap \mathcal{B}) \).

Proof. Let \(h(\bigcap \mathcal{B}) = (a_1, a_2, \ldots, a_n) \). Define a subset \(D \) of \(R^n \) by \(D = \{(x_1, x_2, \ldots, x_n) : x_1 > a_1 \} \cup \left(\bigcup_{i=2}^{n-2} \{(a_1, \ldots, a_{i-1}, x_i, \ldots, x_n) : x_i > a_i \} \right) \). It is easy to see that \(D \) is convex and that \(D \cap (\bigcap \mathcal{B}) = \emptyset \).

Let \(\mathcal{B}^* = \mathcal{B} \cup \{D\} \). If every subfamily of \(\mathcal{B}^* \) of size \(n + 1 \) is an \(I \)-subfamily, it will follow from Helly's theorem that \(\mathcal{B}^* \) is an \(I \)-family too,
which it is not. Hence some subfamily \mathcal{A}^* of \mathcal{B}^* of size $n + 1$ has empty intersection. Clearly $D \in \mathcal{A}^*$. Let $\mathcal{A} = \mathcal{A}^* - \{D\}$. Now $|\mathcal{A}| = n$ and $D \cap (\cap \mathcal{A}) = \emptyset$.

It follows from the definition of D that $h(\cap \mathcal{A}) \subseteq h(\cap \mathcal{B})$. On the other hand, $(\cap \mathcal{A}) \supset (\cap \mathcal{B})$ and $h(\cap \mathcal{A}) \subseteq h(\cap \mathcal{B})$. This proves the lemma. \qed

3. \textit{p-tuplets in} \mathbb{R}^n. We now state and prove our general result on p-tuplets.

\textbf{Theorem A.} For each α, there is a p and an x_0 such that if \mathcal{F} is a family of x p-tuplets in \mathbb{R}^n with $x > x_0$ and $|\mathcal{F}_r| > \alpha(\cdot)$ for some r, $n < r < x$, then \mathcal{F} has an I-subfamily of size px. Furthermore, $p > (\alpha/p^r(\cdot))^{1/(r-n)}$.

\textbf{Proof.} We first show that \mathcal{F} has property (n). \mathcal{F}_n is clearly nonempty. We now verify the two conditions:

1. For $\alpha \in \mathcal{F}_n$, define $f(\alpha) = \{h(A) : A$ a component of $\cap \mathcal{A}\}$. By the definition of h, $f(\alpha) \cap (\cap \mathcal{A}) \neq \emptyset$. In fact, $f(\alpha) \subseteq (\cap \mathcal{A})$. We point out that $1/f(\alpha) \leq p^r$ for all $\alpha \in \mathcal{F}_n$.

2. Let \mathcal{B} be any I-subfamily of \mathcal{F}, $|\mathcal{B}| > n$. Let B be the component of $\cap \mathcal{B}$ which contains $h(\cap \mathcal{B})$. For any $F \in \mathcal{B}$, let $\mathcal{F'}$ be the component of F which contains \mathcal{B} and let $\mathcal{F} = \{\mathcal{F'} : F \in \mathcal{B}\}$. By the lexicographical lemma, there exists $\mathcal{E} \subseteq \mathcal{B}$ such that $|\mathcal{E}| = n$ and $h(\cap \mathcal{E}) = h(\cap \mathcal{B}) = h(B) \in B$. Now $\mathcal{E} = \{F : F \in \mathcal{E} \} \subseteq \mathcal{F}_n$ is contained in \mathcal{B} and $f(\alpha) \cap (\cap \mathcal{B}) \supset \{h(B)\} \neq \emptyset$.

By the combinatorial lemma, \mathcal{F} has an I-subfamily of size at least t, where t is the smallest integer for which $(r-n)^{\frac{1}{r}} > \alpha(\cdot)/p^r$. A crude estimation yields the desired result when $x > x_0$. \qed

Theorem A is a generalization of an earlier result in \mathbb{R}^1 of Katchalski and Liu [6]. In the same paper, it was proved that in \mathbb{R}^1 with $p = 2$, $p < (r - 1)/r$ even if we allow $\alpha = 1$. Hence the answer to question (B) for p-tuplets is negative for $p > 2$, unless r is sufficiently large, for then the lower bound $(\alpha/p^r(\cdot))^{1/(r-n)}$ is close to 1 if α is.

4. \textit{Compact convex sets in} \mathbb{R}^n. In this section, we restrict our attention to compact convex sets in \mathbb{R}^n. We state the particular case $p = 1$ of Theorem A as:

\textbf{Theorem B.} For each α, there are a p and an x_0 such that if \mathcal{F} is a family of x compact convex sets in \mathbb{R}^n with $x > x_0$ and $|\mathcal{F}_r| > \alpha(\cdot)$ for some r, $n < r < x$, then \mathcal{F} has an I-subfamily of size px. Furthermore, $p > (\alpha/\alpha(\cdot))^{1/(r-n)}$.

As it stands, r being fixed, Theorem B does not imply that p tends to 1 as α does. We shall improve the lower bound via a third lemma.

\textbf{Stepping-up Lemma.} Let \mathcal{F} be a family of x convex sets in \mathbb{R}^n such that $|\mathcal{F}_r| > \alpha(\cdot)$ for some α and r, $n < r < x$. Then for any m, $r < m < x$, $|\mathcal{F}_m| > (1 - (1 - \alpha)^{(x-r)})^{\frac{x}{m}}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. The number of subfamilies of \(\mathcal{F} \) of size \(r \) which do not belong to \(\mathcal{F}_r \) is at most \((1 - \alpha)\binom{x}{r}\). The number of subfamilies of \(\mathcal{F} \) of size \(m \) containing at least one of these subfamilies of size \(r \) is at most \((1 - \alpha)\binom{\binom{\binom{m}{r}}{r}}{r}\). Since \(m > r > n + 1 \), Helly's theorem shows that the remaining subfamilies of size \(m \) are in \(\mathcal{F}_m \), and there are at least \((1 - (1 - \alpha)\binom{m}{r})\binom{\binom{m}{r}}{r}\) of them. This proves the lemma. \(\square \)

We are now in a position to prove our main result.

Theorem C. For each \(\rho \), there is an \(\alpha \) such that if \(\mathcal{F} \) is a family of \(x \) compact convex sets in \(\mathbb{R}^n \) with \(|\mathcal{F}_r| > \alpha \binom{x}{r} \) for some \(r, n < r < x \), then \(\mathcal{F} \) has an \(I \)-subfamily of size \(\rho x \).

Proof. Choose \(m > r \) such that
\[
\left(\frac{m}{n} \right)^{1/(n-m)} > 1 - \frac{1 - \rho}{2}
\]
and also
\[
\left(\frac{1 + \rho}{2} \right)^{1+1/(m-n)} > \rho.
\]
Once chosen, \(m \) is fixed. Let \(\bar{x} = \max\{ m, x_0 \} \) where \(x_0 \) is as in Theorem B. Let \(\alpha > \max\{ 1 - (1 - \rho)/2(n), 1 - 1/(\bar{x}) \} \). We consider two cases:

(i) \(x < \bar{x} \). We have
\[
|\mathcal{F}_r| > \alpha \binom{x}{r} > \left(1 - 1/\left(\frac{\bar{x}}{r} \right) \right)\binom{x}{r} = \left(\frac{x}{r} \right) - \left(\binom{x}{r} \right)/\left(\frac{\bar{x}}{r} \right).
\]
It follows that \(|\mathcal{F}_r| = \binom{x}{r} \) and Helly's theorem shows that \(\mathcal{F} \) is an \(I \)-family.

(ii) \(x > \bar{x} \). By the stepping-up lemma,
\[
|\mathcal{F}_m| > \left(1 - (1 - \alpha)\binom{m}{r} \right)\cdot \binom{x}{m},
\]
and by Theorem B, \(\mathcal{F} \) has an \(I \)-subfamily of size \(\omega x \) where
\[
\omega > \left(\left(1 - (1 - \alpha)\binom{m}{r} \right)/\binom{m}{n} \right)^{1/(m-n)} = \left(1 - (1 - \alpha)\binom{m}{r} \right)^{1/(m-n)}\left(\binom{m}{n} \right)^{1/(n-m)} > \left(1 - \frac{1 - \rho}{2} \right)^{1/(m-n)}\left(1 - \frac{1 - \rho}{2} \right) = \left(\frac{1 + \rho}{2} \right)^{1+1/(m-n)} > \rho.
\]
This completes the proof of the theorem. \(\square \)

References

DEPARTMENT OF MATHEMATICS, TECHNION, HAIFA, ISRAEL

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA T6G 2G1, CANADA