THE HOMOLOGY 3-SPHERES WITH INVOLUTIONS

WU-CHUNG HSIANG AND PETER SIE PAO

Abstract. Let Σ be a homology 3-sphere which supports an orientation reversing involution. Then $\mu(\Sigma) = 0$.

In this paper we study the homology 3-spheres which support orientation reversing involutions. Given such a homology 3-sphere, we show that it bounds an orientable, parallelizable 4-manifold of index zero. Hence it has Rohlin invariant 0^2 (Compare this with Problem 4.4 of [3].)

Let Σ be a 3-manifold with $H_*(\Sigma) = H_*(S^3)$, and let g be an orientation reversing involution on Σ with fixed point set F. It follows easily from Smith theory, the Lefschetz fixed point theorem and the slice theorem that F is either a 2-sphere or just two points.

Suppose $F = S^2$. Then by [1, IV. 2.6, p. 179] we know that $\Sigma/Z_2 = \Sigma^*$ is an acyclic 3-manifold with boundary F, and it also follows that Σ is the boundary of $\Sigma^* \times I$. Hence Σ actually bounds an acyclic 4-manifold.

Suppose $F = \{x_0, x_1\}$. Let D_i be a closed g-invariant D^3-neighborhood of x_i ($i = 0, 1$) and $N = \Sigma - \text{Int}(D_0 \cup D_1)$. Notice that the orbit map $\Pi: N \to N^*$ is a 2-fold covering projection. ∂N^* has two connected components $\partial_+ N^*$ and $\partial_- N^*$. They are both diffeomorphic to RP^2. Let $h_+: \partial_+ N^* \to RP^2$ be a diffeomorphism and $h: N^* \to RP^2$ be an extension of h_+. (Such an extension always exists.) It can be easily seen that $h|\partial_- N^*$ is homotopic to a diffeomorphism. Define $f: N^* \to RP^2 \times I$ canonically using h and this homotopy. Observe that $f_*: H_*(N^*) \to H_*(RP^2 \times I)$ is an isomorphism. Let $S^H(RP^2 \times I, \partial(RP^2 \times I))$ be the set of all concordance classes of maps (X, f), where X is a 3-manifold with boundary, $f: X \to RP^2 \times I$ is a map which maps $\partial(X)$ diffeomorphically onto $\partial(RP^2 \times I)$ and induces an isomorphism in homology. (Note. (N^*, f) represents an element in $SH(RP^2 \times I, (RP^2 \times I))$.) Following Browder [2] and Wall [6], let

$$\eta: S^H(RP^2 \times I, \partial(RP^2 \times I)) \to [RP^2 \times I, \partial(RP^2 \times I), G/0, *]$$

be the map defined by the normal invariant. Since

$$i^*: [RP^2 \times I, \partial(RP^2 \times I); G/0, *] \to [RP^1 \times I, \partial(RP^1 \times I); G/0, *]$$

Received by the editors June 19, 1978 and, in revised form, October 20, 1978.

Both authors are supported in part by NSF grants.

This result was obtained first by J. Birman using different methods. Recently, D. Galewski and R. Stern gave yet another proof.
is an isomorphism, and
\[
[RP^1 \times I, \partial (RP^1 \times I); G/0, \ast] \cong H^2(S(RP^1), \mathbb{Z}_2) = \mathbb{Z}_2.
\]

\([RP^2 \times I, \partial (RP^2 \times I); G/0, \ast]\) has two elements. Of course one of them is represented by the identity map. It follows from [4] or [5, Theorem 2.2] that the nontrivial element in \([RP^2 \times I, \partial (RP^2 \times I); G/0, \ast]\) can be represented by a normal map \((f, b)\), where \(f: RP^2 \times I \to RP^2 \times I\) is a map which induces an isomorphism in homology. Hence \((N^*, f)\) is always normally cobordant rel boundary to a homology equivalence from \(RP^2 \times I\) to itself. Let \((W^*, F)\) be such a normal cobordism. Consider the normal map \(F \times \text{id}: W^4 \times CP^2 \to (RP^2 \times I \times I) \times CP^2\). It gives an 8-dimensional surgery problem with surgery obstruction \(\theta(F \times \text{id}) \in L^8_\ast(\mathbb{Z}_2)\). Let
\[
\bar{F} \times \text{id}: \tilde{W}^4 \times CP^2 \to (S^2 \times I \times I) \times CP^2
\]
be the lifting of \(F \times \text{id}\) in the canonical double covers. \(\bar{F} \times \text{id}\) also gives us a surgery problem with a given homology equivalence on the boundary. Let \(\theta(\bar{F} \times \text{id}) \in L^8_\ast(1)\) be its surgery obstruction, and let \(\rho: L^-_\ast(\mathbb{Z}_2) \to L^8_\ast(1)\) be the transfer homomorphism. Then \(\rho(\theta(F \times \text{id})) = \theta(\bar{F} \times \text{id})\). But \(L^8_\ast(\mathbb{Z}_2) = \mathbb{Z}_2\), \(L^8_\ast(1) = Z\), [6, Theorem 13A.1], so \(\rho: \mathbb{Z}_2 \to Z\) must be the trivial map. Thus \(\theta(\bar{F} \times \text{id}) = 0\). However the 8-dimensional surgery obstruction is given by the index. So \(\text{Index}(\tilde{W} \times CP^2) = 0\). \(\text{Index}(\tilde{W}) = \text{Index}(\tilde{W} \times CP^2)\).

Hence \(\text{Index}(\tilde{W}) = 0\). Clearly \(\tilde{W}\) is parallelizable, and
\[
\partial \tilde{W} = N \cup S^2 \times I \cup S^2 \times I \cup S^2 \times I.
\]

Let \(U = \tilde{W} \cup D^3 \times I \cup D^3 \times I\), where these two copies of \(D^3 \times I\) are attached to \(\tilde{W}\) along the second and third copies of \(S^2 \times I\) above in the obvious fashion. Now \(\partial U = \Sigma \cup S^3\). Fill in \(D^4\) along the \(S^3\) in \(\partial U\), we get a 4-manifold \(M\) with boundary \(\Sigma\). Since \(M\) is constructed from \(\tilde{W}\) by adding two 3-handles and one 4-handle, but still has a nonempty boundary, it is clear that \(M\) is still parallelizable and \(\text{Index}(M) = 0\). In conclusion we have the following:

Theorem. Let \(M\) be a 3-manifold with \(H_\ast(\Sigma) = H_\ast(S^3)\). Suppose \(\Sigma\) supports an \(C^\infty\) orientation reversing involution. Then \(\Sigma\) bounds an orientable, parallelizable 4-manifold with index zero. In particular, \(\mu(\Sigma) = 0\).

References

Department of Mathematics, Princeton University, Princeton, New Jersey 08540

Department of Mathematics, The Institute for Advanced Study, Princeton, New Jersey 08540

Department of Mathematics, University of Georgia, Athens, Georgia 30601