On groups which act freely on vector bundles over spheres
HTML articles powered by AMS MathViewer
- by F. E. A. Johnson
- Proc. Amer. Math. Soc. 75 (1979), 318-320
- DOI: https://doi.org/10.1090/S0002-9939-1979-0532158-7
- PDF | Request permission
Abstract:
Let $G \cong K \times Q$ be the semidirect product of a finitely presented group K of type FP and a finite group Q of periodic cohomology. It is shown that G acts freely and properly discontinuously on a vector bundle over a sphere.References
- Andrew Casson and Daniel Henry Gottlieb, Fibrations with compact fibres, Amer. J. Math. 99 (1977), no. 1, 159–189. MR 436144, DOI 10.2307/2374013
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 0210125
- Stephen M. Gersten, A product formula for Wall’s obstruction, Amer. J. Math. 88 (1966), 337–346. MR 198465, DOI 10.2307/2373197
- F. E. A. Johnson, Manifolds of homotopy type $K(\pi ,\,1)$. I, Proc. Cambridge Philos. Soc. 70 (1971), 387–393. MR 290358, DOI 10.1017/s0305004100050003
- Jean-Pierre Serre, Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Ann. of Math. Studies, No. 70, Princeton Univ. Press, Princeton, N.J., 1971, pp. 77–169 (French). MR 0385006
- John Stallings, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos. Soc. 58 (1962), 481–488. MR 149457
- John R. Stallings, On infinite processes leading to differentiability in the complement of a point, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 245–254. MR 0180983
- Richard G. Swan, Periodic resolutions for finite groups, Ann. of Math. (2) 72 (1960), 267–291. MR 124895, DOI 10.2307/1970135 J. H. C. Whitehead, Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc. 45 (1939), 243-337.
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 75 (1979), 318-320
- MSC: Primary 57S30; Secondary 20J05
- DOI: https://doi.org/10.1090/S0002-9939-1979-0532158-7
- MathSciNet review: 532158