Whitney’s trick for three $2$-dimensional homology classes of $4$-manifolds
HTML articles powered by AMS MathViewer
- by Masayuki Yamasaki
- Proc. Amer. Math. Soc. 75 (1979), 365-371
- DOI: https://doi.org/10.1090/S0002-9939-1979-0532167-8
- PDF | Request permission
Abstract:
In his recent paper, Y. Matsumoto has defined a triple product of 2-homology classes of simply-connected oriented 4-manifolds, when the intersection numbers are zero. In the present paper, the author establishes that three 2-homology classes can be homotopically separated if the intersection numbers and the triple product vanish.References
- Michael Freedman and Robion Kirby, A geometric proof of Rochlin’s theorem, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 85–97. MR 520525
- Kazuaki Kobayashi, On a homotopy version of $4$-dimensional Whitney’s lemma, Math. Sem. Notes Kobe Univ. 5 (1977), no. 1, 109–116. MR 458431
- Yukio Matsumoto, Secondary intersectional properties of $4$-manifolds and Whitney’s trick, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 99–107. MR 520526
- John Milnor, Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, N.J., 1965. Notes by L. Siebenmann and J. Sondow. MR 0190942
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 75 (1979), 365-371
- MSC: Primary 57N15
- DOI: https://doi.org/10.1090/S0002-9939-1979-0532167-8
- MathSciNet review: 532167