MODULAR GROUP ALGEBRAS OF TOTALLY PROJECTIVE
p-PRIMARY GROUPS

WARREN MAY

ABSTRACT. Let F be a field of characteristic $p > 0$ and let G be a totally projective abelian p-group of countable p-length. If $FG \cong FH$ for some group H, then it is shown that $G \cong H$.

Let F be a field of characteristic $p > 0$ and let G be an (infinite) abelian p-group. The question of whether $FG \cong FH$ implies that $G \cong H$ has been considered by Berman and Mollov [1] and May [5]. (For the finite non-abelian case, see Passman [8].) It is shown in [1], [5] and by Dubois and Sehgal [2] that the Ulm-Kaplansky invariants of G and H must be equal. Thus one can easily settle the case when G is countable. Since the totally projective p-groups form the largest natural class of abelian p-groups that are determined by their Ulm-Kaplansky invariants, one would like to know in general whether H must be totally projective if G is. In this direction, Berman and Mollov give an affirmative answer if G is a direct sum of cyclic groups. By utilizing a theorem of Hill [4], we shall extend these results to p-groups of countable p-length. Precisely, we shall prove:

Theorem 1. Let R be a commutative ring with identity in which p is not invertible, and let Ω be the first uncountable ordinal. Let G be an abelian p-group of p-length $< \Omega$ whose reduced part is totally projective. If H is a group such that RG and RH are isomorphic algebras, then H is isomorphic to G.

To deduce Theorem 1, we shall prove several facts about the group of units of RG. For any commutative ring R with identity and group G, let $U(RG)$ denote the group of units of RG that have augmentation 1 (i.e., the coefficients sum to 1). We prove:

Theorem 2. Let R be a commutative ring with identity of characteristic p that is perfect (i.e., every element is a pth power). Let G be an abelian p-group of p-length $< \Omega$ whose reduced part is totally projective. Then $U(RG)$ is an abelian p-group of the same p-length as G, and whose reduced part is totally projective. Moreover, G is a direct factor of $U(RG)$.

We remark that Mollov [6], [7] has investigated the structure of unit groups under certain restrictions.
Before proving two preliminary lemmas, we must briefly discuss \(p \)-heights. Groups will be written multiplicatively, thus we shall use \(G^\alpha \) (\(\alpha \) an ordinal) to denote the subgroup of \(G \) consisting of elements with \(\alpha \)-heights \(\geq \alpha \). Suppose that \(R \) is a commutative ring with identity of characteristic \(p \), and let \(G \) be an abelian \(p \)-group. Then \(U(RG) \) is a \(p \)-group and consists precisely of the elements of \(RG \) of augmentation 1. Suppose further now that \(R \) is perfect. Then \(U(RG)^\alpha = U(R(G^\alpha)) \), thus it follows that \(U(RG)^\alpha = U(R(G^\alpha)) \) for every ordinal \(\alpha \). Let \(\alpha \in U(RG) \) and consider the support of \(\alpha \), i.e. those \(g \in G \) that appear nontrivially in \(\alpha \). Clearly the \(p \)-height of \(\alpha \) in \(U(RG) \) is the minimum of the \(p \)-heights in \(G \) of the elements in the support of \(\alpha \). In particular, if we regard \(G \) as a subgroup of \(U(RG) \), then it is an isotype subgroup. We also observe that the \(p \)-length of \(U(RG) \) is clearly equal to the \(p \)-length of \(G \).

Lemma 1. Let \(R \) be a perfect commutative ring with identity of characteristic \(p \), and let \(G \) be an abelian \(p \)-group.

(a) Let \(A \) be a finite subgroup of \(G \), and let \(N \) be a subgroup of \(U(RA) \). Then \(N \) is a nice subgroup of \(U(RG) \).

(b) If \(G \) is countable, then the reduced part of \(U(RG) \) is totally projective.

Proof. Let \(\alpha \in U(RG) \) and let \(S = \{ ga \mid g \in \text{(support } \alpha \text{)}, a \in A \} \). If \(\beta \in N \), then the \(p \)-height of \(\alpha \beta \) equals the \(p \)-height of some element in the finite set \(S \). Therefore \(\beta \) can be chosen to maximize this \(p \)-height. Hence \(N \) is nice in \(U(RG) \).

Now suppose that \(G \) is countable, and let \(A_1 \subseteq A_2 \subseteq \cdots \) be finite subgroups of \(G \) with \(\bigcup_{i<\omega} A_i = G \). For each \(i \), we can choose a family \(\{ N_{i\alpha} \} \) of subgroups of \(U(RG) \) indexed by an initial segment of ordinals such that \(U(RA_i) \subseteq N_{i\beta} \subseteq N_{i\alpha} \subseteq U(RA_{i+1}) \) if \(\beta < \alpha \), \(N_{i\alpha} = \bigcup_{\beta < \alpha} N_{i\beta} \) if \(\alpha \) is a limit ordinal,

\[
N_{i0} = U(RA_i), \quad \bigcup_\alpha N_{i\alpha} = U(RA_{i+1}), \quad \text{and} \quad (N_{i\alpha+1} : N_{i\alpha}) = p.
\]

Each \(N_{i\alpha} \) is nice in \(U(RG) \) by (a), therefore \(\bigcup_{i<\omega}(N_{i\alpha}) \) is a nice decomposition series for \(U(RG) \). It follows that the reduced part of \(U(RG) \) is totally projective.

Lemma 2. Let \(R \) be a commutative ring with identity and let \(G \) be an abelian group. Suppose that there exists a group \(B \) such that \(G \) is isomorphic to a direct factor of \(U(RB) \). Then \(G \) is a direct factor of \(U(RG) \).

Proof. Let \(G \) be isomorphic to the direct factor \(V \) of \(U(RB) \). Regarding \(V \) as a subgroup of \(U(RB) \), the isomorphism \(G \to V \) induces a ring homomorphism \(RG \to RB \), and hence a homomorphism \(U(RG) \to U(RB) \). By composing with a projection of \(U(RB) \) onto \(V \), we obtain a homomorphism \(U(RG) \to V \) that maps \(G \) isomorphically to \(V \). Thus \(G \) is a direct factor of \(U(RG) \).

Proof of Theorem 2. We have already observed that \(U(RG) \) is an abelian
p-group of the same p-length as G. We shall now show that the reduced part of \(U(RG) \) is totally projective by using induction on \(|G|\). The countable case is done by Lemma 1, therefore we may suppose that G is uncountable. The assumption that G has totally projective reduced part of p-length < \(\Omega \) means precisely that G is isomorphic to a direct sum of countable p-groups (see [3, Theorem 82.4]). Let \(\tau \) be the first ordinal with \(|\tau| = |G|\). We may assume that \(G = \Pi_{\beta<\tau} A_\beta \), where each \(A_\beta \) is countable. For each \(\alpha < \tau \), put \(G_\alpha = \Pi_{\beta<\alpha} A_\beta \) and \(U_\alpha = U(RG_\alpha) \). (Note that \(G_0 = 1 \).) The projection \(G_{\alpha+1} \to G_\alpha \) with kernel \(A_\alpha \) induces a surjective map \(U_{\alpha+1} \to U_\alpha \) that is idempotent. Thus we obtain an inner direct splitting \(U_{\alpha+1} = U_\alpha \times K_\alpha \). It is easily seen that \(U(RG) = \Pi_{\alpha<\tau} K_\alpha \). But \(|\alpha + 1| < |G|\), thus \(|U_{\alpha+1}| < |G|\), and consequently the reduced part of \(U_{\alpha+1} \) is totally projective by induction. It now follows that \(U(RG) \) has totally projective reduced part.

To show that G is a direct factor of \(U(RG) \) let \(B = \Pi_{i<\tau} G_i \). Then the reduced part of \(U(RB) \) is totally projective by what we have just shown. Let \(f_\sigma(G) \) denote the \(\sigma \)th Ulm-Kaplansky invariant of G. We know that \(f_\sigma(B) < f_\sigma(U(RB)) \) since B is isotype in \(U(RB) \), therefore \(f_\sigma(U(RB)) = f_\sigma(B) + f_\sigma(U(RB)) \) for every ordinal \(\sigma \). Moreover, if \(D_G \) and \(D_U \) are the maximal divisible subgroups of G and \(U(RB) \), respectively, then \(D_U \cong D_G \times D_U \). Hence, \(U(RB) \cong G \times U(RB) \) since we are dealing with totally projective reduced parts. By Lemma 2, we conclude that G is a direct factor of \(U(RG) \).

Since the complement of G in \(U(RG) \) has totally projective reduced part, one could determine it up to isomorphism by computing the rank of its maximal divisible subgroup and its Ulm-Kaplansky invariants in terms of R and the Ulm-Kaplansky invariants of G. We remark that this is a feasible computation, but we shall not discuss it here.

Proof of Theorem 1. Our assumptions on R guarantee that there is a homomorphism (not necessarily surjective) \(R \to F \), where F is an algebraically closed field of characteristic p. It follows that \(FG \cong FH \). One easily sees that H must be an abelian p-group since a torsion-free element in H would be transcendental over F, while an element of order relatively prime to p would yield a nontrivial idempotent in \(FH \). Moreover, the maximal divisible subgroups of G and H are isomorphic by reference to [5, Corollary 7].

We may assume that the isomorphism \(FG \cong FH \) preserves augmentations, hence \(U(FG) \cong U(FH) \). Theorem 2 allows us to conclude that the reduced part of \(U(FH) \) is totally projective of countable p-length. Thus the reduced part of H is isomorphic to an isotype subgroup of countable p-length in the reduced part of \(U(FH) \). It now follows immediately from a result of Hill [4, Theorem 1] that the reduced part of H is totally projective. As was mentioned in the introduction, the Ulm-Kaplansky invariants of G and H are known to be equal; therefore \(G \cong H \).

We conclude with several questions and remarks. Does Theorem 1 hold if G has p-length \(\geq \Omega \)? In this case, we no longer have Hill's theorem to apply.
Even more, there is uncertainty whether Theorem 2 holds if the p-length is $> \Omega$ since G would not be a direct sum of countable groups. If one tries to prove Theorem 2 by induction on the p-length of G, the difficult step seems to occur at isolated ordinals. As a final question, if G is a torsion-complete abelian p-group, then is H torsion-complete? If so, then one could conclude G and H would be isomorphic since the Ulm-Kaplansky invariants serve to classify torsion-complete groups.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ARIZONA, TUCSON, ARIZONA 85721

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use