A combinatorial formula for normal Stiefel-Whitney classes
HTML articles powered by AMS MathViewer
- by T. Banchoff and C. McCrory
- Proc. Amer. Math. Soc. 76 (1979), 171-177
- DOI: https://doi.org/10.1090/S0002-9939-1979-0534413-3
- PDF | Request permission
Abstract:
Using an ordering of the vertices of a combinatorial n-manifold K, we give an explicit description of a simplicial $\bmod 2$ cycle ${c_{n - i}}(K)$ which represents the dual of the ith normal Stiefel-Whitney class of K.References
- T. Banchoff, Integral normal classes for polyhedral surfaces in 4-space (to appear).
- Thomas F. Banchoff, Stiefel-Whitney homology classes and singularities ofprojections for polyhedral manifolds, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 1, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 333–347. MR 0377921
- Richard Z. Goldstein and Edward C. Turner, A formula for Stiefel-Whitney homology classes, Proc. Amer. Math. Soc. 58 (1976), 339–342. MR 415643, DOI 10.1090/S0002-9939-1976-0415643-5
- Stephen Halperin and Domingo Toledo, Stiefel-Whitney homology classes, Ann. of Math. (2) 96 (1972), 511–525. MR 312515, DOI 10.2307/1970823
- Robert M. Hardt and Clint G. McCrory, Steenrod operations in subanalytic homology, Compositio Math. 39 (1979), no. 3, 333–371. MR 550647
- Norman Levitt and Colin Rourke, The existence of combinatorial formulae for characteristic classes, Trans. Amer. Math. Soc. 239 (1978), 391–397. MR 494134, DOI 10.1090/S0002-9947-1978-0494134-6
- Clint McCrory, Euler singularities and homology operations, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 1, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 371–380. MR 0377920 —, Geometric homology operations, Advances in Math. (to appear). C. McCrory, D. Damiano and J. Stormes, Lectures on homology operations, Brown University, Providence, R. I., 1977.
- Arnold Shapiro, Obstructions to the imbedding of a complex in a euclidean space. I. The first obstruction, Ann. of Math. (2) 66 (1957), 256–269. MR 89410, DOI 10.2307/1969998
- N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math. (2) 48 (1947), 290–320. MR 22071, DOI 10.2307/1969172
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 76 (1979), 171-177
- MSC: Primary 57R20
- DOI: https://doi.org/10.1090/S0002-9939-1979-0534413-3
- MathSciNet review: 534413