VALUES TAKEN MANY TIMES BY EULER'S PHI-FUNCTION

KENT WOOLDRIDGE

ABSTRACT. Let \(b_m \) denote the number of integers \(n \) such that \(\phi(n) = m \), where \(\phi \) is Euler's function. Erdős has proved that there is a \(\delta > 0 \) such that \(b_m > m^\delta \) for infinitely many \(m \). In this paper we show that we may take \(\delta \) to be any number less than \(3 - 2\sqrt{2} \).

We begin with a lemma that is a simple case of Theorem 3.12 in [2].

Lemma 1. Let \(a \) and \(k \) be relatively prime positive integers of opposite parity. Then for any \(\epsilon > 0 \) we have

\[
\sum_{p < N} \frac{1}{ap + k \text{ prime}} < (8 + \epsilon)H(a, k)N(\log N)^{-2}
\]

for \(N > N_0 \), where

\[
H(a, k) = \prod_{p > 2} \left(1 - (p - 1)^{-2} \right) \prod_{p|ak} (p - 1)(p - 2)^{-1}
\]

and where \(N_0 \) depends only on \(\epsilon \).

Next we need a well-known lemma, whose proof may be found in [3].

Lemma 2. Let \(d_1, d_2, \ldots \) be a sequence of complex numbers such that \(\sum_{n=1}^{\infty} d_n n^{-s} \) is absolutely convergent. Then if

\[
\sum_{m=1}^{\infty} c_m m^{-s} = \sum_{m=1}^{\infty} m^{-s} \sum_{n=1}^{\infty} d_n n^{-s} \quad (\text{Re } s > 1),
\]

we have

\[
\lim_{x \to \infty} x^{-1} \sum_{m \leq x} c_m = \sum_{n=1}^{\infty} d_n n^{-1}.
\]

Let \(k \) be a fixed positive integer. Let \(t \) be a positive number and let

\[
r = 1/(1 + t).
\]

Let \(G(N, k, t) \) denote the number of primes \(p \) greater than \(k \) and not exceeding \(N \) for which \(p - k \) has a prime divisor \(q \) such that \(q > N' \).

Lemma 3. For any \(\epsilon > 0 \) and any positive \(t < (\sqrt{2} - 1)/2 \) we have

\[
G(N, k, t) < 4(1 + \epsilon)t(1 + t)N(\log N)^{-1}
\]

for sufficiently large \(N \).

Received by the editors August 11, 1978.

PROOF. Fix $\epsilon > 0$. Let p be a prime such that $k < p < N$. Suppose $q > N^r$ is a prime dividing $p - k$. Then $p - k = aq$ with $(a, k) = 1$ and $a < N^{1-r}$.

Clearly a and k are of opposite parity. Thus

$$G(N, k, t) < \sum_{k < p < N}^{(p - k)/a \text{ prime}} \sum_{a < N^{1-r}}^{' 1} \sum_{a < N^{1-r}}^{' q < (N-k)/a} 1$$

(2)

where the prime indicates that the sum is over integers a such that a and k are of opposite parity and $(a, k) = 1$.

We shall show that, for $a < N^{1-r}$, we have

$$\left(N - k \right) \left(\log \frac{N - k}{a} \right)^{-2} < N(r \log N)^{-2}$$

(3)

for $N > M$, where M is independent of a. Since the left-hand side of (3) increases with a, the assertion (3) is true if it holds with a replaced by N^{1-r}.

The resulting inequality is easily shown to be equivalent to

$$-r^2k(\log N)^2 < 2rN \log N \log(1 - kN^{-1}) + N(\log(1 - kN^{-1}))^2.$$ (4)

Note that $x \log(1 - kx^{-1}) \to -k$ as $x \to \infty$. This implies that the right-hand side of (4) is $O(\log N)$. The assertion (3) follows.

If we use Lemma 1 together with (2) and (3) we have

$$G(N, k, t) < 8(1 + \epsilon)N(r \log N)^{-2} \sum_{a < N^{1-r}}^{' H(a, k)a^{-1}}.$$ (5)

Define the multiplicative function f by $f(2) = 1, f(p) = 1 + (p - 2)^{-1}$ for $p > 2$, and

$$f(n) = \prod_{p|n} f(p) = \prod_{p|n, p > 2} \left(1 + \frac{1}{p - 2} \right).$$

Then we have

$$H(a, k) = Df(k)f(a),$$

where

$$D = \prod_{p > 2} \left(1 + \frac{1}{p(p - 2)} \right)^{-1}.$$ (6)

Thus

$$\sum_{a < x}^{' H(a, k)a^{-1}} = Df(k) \sum_{a < x}^{' f(a)a^{-1}}.$$ (6)

We will use Lemma 2 and a partial summation to estimate the last sum.

First assume that k is even. Then, for $\Re s > 1$,

$$\sum_{n=1}^{\infty} f(n) \frac{1}{ns} = \prod_{p|k} \left(1 + f(p) \left(\frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots \right) \right) = \zeta(s)g(s),$$

where
where
\[g(s) = \prod_{p|k} \left(1 - \frac{1}{p^s} \right) \prod_{p|k} \left(1 + \frac{1}{p^s(p - 2)} \right). \]

The product converges absolutely for \(\Re s > 0 \).

Now assume that \(k \) is odd. Then, for \(\Re s > 1 \),
\[\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \left(\frac{1}{2^s} + \frac{1}{2^{2s}} + \cdots \right) \prod_{p|k, p > 2} \left\{ 1 + f(p) \left(\frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots \right) \right\} \]
\[= \zeta(s) g(s), \]

where
\[g(s) = \frac{1}{2^s} \prod_{p|k} \left(1 - \frac{1}{p^s} \right) \prod_{p|k} \left(1 + \frac{1}{p^s(p - 2)} \right). \]

In either case, we can conclude from Lemma 2 that
\[\lim_{x \to \infty} x^{-1} \sum_{n \leq x} f(n) = g(1) = B(k) \frac{\phi(k)}{k} \prod_{p|k, p > 2} \left(1 + \frac{1}{p(p - 2)} \right), \]
where \(B(k) \) equals 1 or \(\frac{1}{2} \) according as \(k \) is even or odd.

Let
\[C(x) = \sum_{n \leq x} f(n) = g(1)x + o(x). \]

We have
\[\sum_{n \leq x} f(n) = \frac{C(x)}{x} + \int_1^x \frac{C(u)}{u^2} \, du \]
\[= O(1) + g(1) \log x + o(\log x). \quad (7) \]

Combining (6) and (7) we see that
\[\sum_{a \leq x} \frac{H(a, k)a^{-1}}{n} \sim Df(k) B(k) \frac{\phi(k)}{k} \prod_{p|k, p > 2} \left(1 + \frac{1}{p(p - 2)} \right) \log x \]
\[= \frac{1}{2} \log x. \quad (8) \]

Combining (5) and (8) we see that, for large \(N \),
\[G(N, k, t) < 4(1 + \epsilon) t(1 + t) N \log N \]

since \((1 - r)/r^2 = t(1 + t) \). \(\Box \)

Note that the Prime-Number Theorem implies that Lemma 3 is trivial if \(t > (\sqrt{2} - 1)/2 \).

Let \(P(N, k, t) \) denote the number of primes in the interval \((k, N] \) such that \(p - k \) is composed of primes less than \(N' \), where \(r = (1 + t)^{-1} \). Then
\[\pi(N) = \pi(k) + G(N, k, t) + P(N, k, t). \quad (9) \]
Lemma 4. For any $t < (\sqrt{2} - 1)/2$ and any
\[\epsilon < \epsilon(t) = (1 - 4t(1 + t))/(2 + 5t + 4t^2) \]
we have
\[P((\log N)^{r+1}, k, t) > \epsilon(\log N)^{r+1}(\log \log N)^{-1}, \]
provided N is sufficiently large.

Proof. Choose $t < (\sqrt{2} - 1)/2$ and $\epsilon < \epsilon(t)$. By the Prime-Number Theorem we have
\[\pi((\log N)^{r+1}) - \pi(k) > \frac{1 - \epsilon}{t + 1} (\log N)^{r+1}(\log \log N)^{-1} \quad (10) \]
for large N. By Lemma 3 we have
\[G((\log N)^{r+1}, k, t) < 4(1 + \epsilon)t(\log N)^{r+1}(\log \log N)^{-1} \quad (11) \]
for large N.

Combining (9), (10), and (11) we see that
\[P((\log N)^{r+1}, k, t) \]
\[> \frac{(1 - \epsilon)(t + 1)^{-1} - 4(1 + \epsilon)t}{(log N)^{r+1}(log \log N)^{-1}} \quad (12) \]
for large N. Since $t < (\sqrt{2} - 1)/2$, we have $(t + 1)^{-1} - 4t > 0$. It is easy to check that if $\epsilon < \epsilon(t)$, then
\[(1 - \epsilon)(t + 1)^{-1} - 4(1 + \epsilon)t > \epsilon. \quad (13) \]
If we combine (12) and (13) we have the result. □

Let $Q(N, k, t)$ denote the number of square-free integers not exceeding N that are composed of the primes counted by $P((\log N)^{r+1}, k, t)$.

Lemma 5. For any $t < (\sqrt{2} - 1)/2$ and any ϵ we have $Q(N, k, t) > N^{1 - \epsilon(1 - r)}$ for large N, where $r = (t + 1)^{-1}$.

Proof. Let $t < (\sqrt{2} - 1)/2$ and assume without loss of generality that $\epsilon < \epsilon(t) < 1$. Let $u = \epsilon/2$, and let
\[c = c(t, N) = \log N((t + 1)\log \log N)^{-1}. \]
Let $d = \lceil c \rceil$. Suppose q is square-free and has d prime factors that are counted by $P((\log N)^{r+1}, k, t)$. Then $q < (\log N)^{r(t+1)} = N$. The number of such q is the binomial coefficient $B = \binom{P}{d}$, where $P = P((\log N)^{r+1}, k, t)$. By Lemma 4 we have
\[P > \epsilon(\log N)^{r+1}(\log \log N)^{-1}. \]
Since
\[\binom{m}{n} > \left(\frac{m}{n} \right)^n \quad \text{for } m > n > 1, \]
we have

\[B > \left(\frac{\log N}{d} \right)^d > (\varepsilon(t + 1)(\log N))^{d}. \]

(14)

For large \(N \) we have

\[\frac{(1 - u)\log N}{(t + 1)\log \log N} < d < \frac{(1 + u)\log N}{(t + 1)\log \log N} \]

(15)

and

\[\log \log N > \frac{(1 + u)(-\log \varepsilon)}{tu}. \]

(16)

Now, using (15) and (16), we have

\[e^d > \exp((1 + u)\log \varepsilon \log N((t + 1)\log \log N)^{-1}) \]

\[> \exp(-tu(1 + t)^{-1}\log N) = N^{-u(1-r)}. \]

(17)

Also,

\[(\log N)^{td} > \exp(t(1 - u)\log N((t + 1)\log \log N)^{-1}\log \log N) \]

\[= \exp(t(t + 1)^{-1}(1 - u)\log N) = N^{(1-u)(1-r)}. \]

(18)

Using (14), (17), and (18), we see that

\[Q(N, k, t) > B > N^{(1-u)(1-r)-u(1-r)} = N^{(1-e)(1-r)}. \]

Lemma 6. Let \(M(N) \) denote the number of integers not exceeding \(N \) that are composed of primes less than \(\log N \). Then for any \(\varepsilon > 0 \) we have \(M(N) < N^\varepsilon \) for sufficiently large \(N \).

Proof. This is easily proved. The proof may be found in Erdös [1].

Let \(f \) be a multiplicative arithmetic function with \(f(p) = p - k \) for prime \(p \) greater than \(k \). We need not consider the values of \(f \) at higher prime powers or at primes not exceeding \(k \).

Theorem. Let \(f \) be as above. If \(\delta < 3 - 2\sqrt{2} \), then there are infinitely many \(m \) such that, for more than \(m^\delta \) square-free integers \(q \), we have \(m = f(q) \).

Proof. If \(t < (\sqrt{2} - 1)/2 \) and \(\varepsilon < \varepsilon(t) \) there are, by Lemma 10, at least \(\varepsilon(\log N)^{t+1}(\log N)^{-1} \) primes in the interval \((k, (\log N)^{t+1}] \) such that \(p - k \) is composed of primes less than \(\log N \). Let \(u = \varepsilon/2 \) and let \(r = (t + 1)^{-1} \). By Lemma 5 the are at least \(N^{(1-u)(1-r)} \) square-free integers \(q < N \) that are composed of these primes. Let \(W \) be the number of values of \(f(q) \) for these square-free integers. Since

\[f(q) = \prod_{p|q} (p - k) \]

we see that \(f(q) \) is divisible only by primes less than \(\log N \) for each of these \(q \). By Lemma 6 we have \(W < M(N) < N^u \) for large \(N \). By the pigeon-hole principle there is an \(m < N \) such that, for at least
\[N^{(1-u)(1-r)-u} \geq N^{(1-r) - \varepsilon} \geq m^{(1-r) - \varepsilon} \]
of these \(q \), we have \(m = f(q) \). If \(\delta < 3 - 2\sqrt{2} \) we can choose \(t < (\sqrt{2} - 1)/2 \) and \(\varepsilon < \varepsilon(t) \) so that \((1 - r) - \varepsilon = t(1 + t)^{-1} - \varepsilon > \delta \), since
\[
\frac{(\sqrt{2} - 1)/2}{1 + (\sqrt{2} - 1)/2} = 3 - 2\sqrt{2}.
\]
Thus for \(\delta < 3 - 2\sqrt{2} \) and \(N \) sufficiently large, we have, for some \(m < N \), more than \(m^3 \) square-free integers \(q \) such that \(m = f(q) \). The theorem follows.

\[\square \]

\textbf{References}

\textbf{Department of Mathematics, California State College, Stanislaus, Turlock, California 95380}