THE SOLVABILITY OF OPERATOR EQUATIONS WITH ASYMPTOTIC QUASIBOUNDED NONLINEARITIES

P. S. MILOJEVIĆ

Abstract. We study the solvability of operator equations involving quasi-bounded and asymptotically quasibounded nonlinear perturbations of linear Fredholm operators.

1. Let X and Y be Banach spaces, $L: X \to Y$ a linear Fredholm map of nonnegative index and $N: X \to Y$ a compact map. The operator equation of the form

$$Tx = Ax + Nx = f$$

has been extensively studied by many authors in recent years. Under various growth conditions on N, the surjectivity of T has been proven in a number of papers (see [4], [5], [7] and the references therein).

Alternatively, beginning with a paper of Landesman and Lazer [6], much work has been done on the solvability of equation (1) for a certain range of values of Pf, where P is the projection of Y on the cokernel of A. Using the stable homotopy arguments, Nirenberg [9], [10], Berger [1], Mawhin [8], Podolak [11], Borisovich, Zvyagin and Sapronov [2] and others have studied equation (1). The alternative method has also been used to study equation (1) (with noncompact N too) in a series of papers by Cesari and his coworkers, Fučík, Kučera and Nečas [5], and many others (cf. the survey paper by Cesari [3] and the monograph by Berger [1] for contributions of other authors). In all these papers (except in [2], [7], [11]) N is assumed to have less than linear or linear growth.

In [2] and [11] the authors have studied equation (1) under the assumption that N is asymptotically linear or asymptotically Lipschitz (i.e., B in Definition 1 below is a Lipschitz map), respectively. In a series of papers Mawhin (cf. [7], [8]) has studied equation (1) with $f \in R(A)$ involving certain quasibounded maps N using his coincidence degree.

In this paper we study the surjectivity of T with N either quasibounded or asymptotically quasibounded as defined below. Moreover, in case when the index of A, $i(A)$, is zero we provide a new growth condition on $PN|_{\ker A}$ that insures the solvability of equation (1) with these types of nonlinearities N. In the proofs of our main results we use a special case of the degree theory for

Received by the editors June 27, 1978.

This work was partially supported by the NRC Grant A 4556.
compact perturbations of nonlinear C^1-Fredholm maps as developed in [2] or, equivalently, the stable homotopy arguments since for our map T this degree can be defined in terms of elements of the stable homotopy group $\pi_{n+m}(S^m)$ (see [1], [2], [9]).

2. Set $X_1 = \ker A$ and $Y_2 = A(X)$. Since A is Fredholm, $\dim X_1 = n < \infty$ and Y_2 is closed we have the following direct sum decompositions: $X = X_1 \oplus X_2$ and $Y = Y_1 \oplus Y_2$ with $\dim Y_1 = m < \infty$ and $\text{ind}(A) = n - m > 0$. Define a new norm on X by

$$\|x\|_1 = \max(\|x_1\|, \|x_2\|),$$

where $x = x_1 + x_2$ with $x_i \in X_i$, $i = 1, 2$. Let $P: Y \to Y_1$ be a linear continuous projection onto Y_1, H be the inverse of the linear homeomorphism $A|_{X_2}$: $X_2 \to Y_2$ and $\alpha = \|H\|.$

Theorem 1. Suppose that for a given f in Y the following conditions hold:

(1) There exist constants $M_f > 0$ and $N_f > 0$ such that $PN(x_1 + x_2) - hf_1 \neq 0$ for $\|x_2\| \leq r$, $r > N_f$, $\|x_1\| > rM_f$ and $t \in [0, 1]$;

(2) $M = H(I - P)N$ is quasibounded, i.e.,

$$|M| = \limsup_{\|x\|_1 \to \infty} \frac{\|Mx\|}{\|x\|_1} < \infty$$

and $|M|\max\{1, M_f\} < 1$;

(3) the stable homotopy class η_p of $PN|_{S^p_{n-1}}: S^p_{n-1} \to Y_1|\{0\}$, $\rho > rM_f$, is nontrivial, where $S^p_{n-1} \subset X_1$ is a sphere of radius ρ.

Then equation (1) is solvable for this f.

Proof. Let $\varepsilon > 0$ be small. By (2) there exists $R > N_f$ such that

$$\|Mx\| = \|H(I - P)Nx\| < (|M| + \varepsilon)\|x\|_1$$

for all $\|x\|_1 > R$. Moreover, there exists an $r > R$ such that $Ax + t(I - P)Nx - tf_1 \neq 0$ for all $x = x_1 + x_2$ with $\|x_1\| < rM_f$ and $\|x_2\| = r$ and $t \in [0, 1]$. If not, then for each $r > R$ there exist $t \in [0, 1]$ and x with $\|x_1\| < rM_f$ and $\|x_2\| = r$ such that $Ax_2 + t(I - P)Nx - tf_2 = 0$, and therefore

$$\|x_2\| < \|H(I - P)Nx\| + \alpha\|f_2\| \leq (|M| + \varepsilon)\|x\|_1 + \alpha\|f_2\|,$$

or

$$1 < \frac{1}{r}(\|M| + \varepsilon)\|x\|_1 + \frac{\alpha}{r}\|f_2\| \leq (|M| + \varepsilon)\max\{1, M_f\} + \frac{\alpha}{r}\|f_2\|.$$

Passing to the limit as $r \to \infty$, we obtain $1 < (|M| + \varepsilon)\max\{1, M_f\}$ which is in contradiction with condition (2) for ε small enough. Hence, an r with the above property exists.

Next, we define $D = \{x = x_1 + x_2 \in X | \|x_1\| < rM_f, \|x_2\| < r\}$ with r chosen as above, and define the homotopy $H: [0, 1] \times D \to Y$ by

$$H(t, x) = (Ax + t(I - P)Nx - tf_2, PN(x_1 + tx_2) - tf_1).$$
We claim that $H(t, x) \neq 0$ for $t \in [0, 1]$ and $x \in \partial D$. Indeed, if $x \in \partial D$ is such that $\|x_2\| < r$, then $\|x_1\| = rM_0$ and by (1), $PN(x_1 + tx_2) - t\phi \neq 0$ for all $t \in [0, 1]$. If $x \in \partial D$ is such that $\|x_1\| < rM_0$, then $\|x_2\| = r$ and $Ax + t(I - P)Nx - t\phi \neq 0$ for all $t \in [0, 1]$. Thus, by the homotopy theorem in [2],
\[
\deg(A + N - f, \overline{D}, 0) = \deg(H_0, \overline{D}, 0) = \eta_r,
\]
which, by the solvability property of this degree, implies that $Ax + Nx = f$ for some $x \in D$. □

To treat a larger class of nonlinear maps N, we need:

Definition 1. A map $N: X \to Y$ is said to be *asymptotically quasibounded* if there exists a nonzero continuous quasibounded map $B: X \to Y$, i.e.,
\[
|B| = \limsup_{\|x\| \to \infty} \frac{\|Bx\|}{\|x\|} < \infty
\]
such that
\[
(A) \quad \lim_{R \to \infty} \frac{N(Rx)}{R} = B(x) \text{ uniformly on bounded sets in } X.
\]
Such maps with B Lipschitz have been studied by Podolak [11].

Theorem 1 admits the following extension:

Theorem 2. Suppose that N satisfies condition (A) and that B is continuous, satisfies conditions (1) and (3) of Theorem 1 for $f = 0$ and that the following condition holds:

\[
(2') K = H(I - P)B \text{ is quasibounded, i.e.,}
\]
\[
|K| = \limsup_{\|x\| \to \infty} \frac{\|Kx\|}{\|x\|} < \infty
\]
and $|K| \max\{1, M_0\} < 1$.

Then equation (1) is solvable for each f in Y.

Proof. Since for each f in Y, $Nf = Nx - f$ satisfies condition (A) with the same B, it is sufficient to consider the case $f = 0$. Define
\[
\overline{D} = \{ x = x_1 + x_2 \in X \mid \|x_1\| < rM_0, \|x_2\| < r \},
\]
where r is chosen as in Theorem 1 using property (2') of K. For $R > 0$, define the map $H_R: \overline{D} \to Y$ by
\[
H_R(x) = (1/R)(A(Rx) + (I - P)N(Rx), PN(Rx))
\]
and the homotopy $H: [0, 1] \times \overline{D} \to Y$ by
\[
H(t, x) = (Ax + t(I - P)Bx, PB(xx + tx_2)).
\]
By our choice of r we know that $H(t, x) \neq 0$ for $t \in [0, 1]$ and $x \in \partial D$. Clearly, if $x \in X$ is a solution of equation (1), then $u = x/R \in D$ is a solution of $H_R(u) = 0$ for R sufficiently large, and conversely. Moreover, $H_R(x) \neq 0$ uniformly for $x \in D$ since $H(1, \cdot)$ is a proper map. In view of this, it follows that for sufficiently large R, $H_R(x) \neq 0$ on ∂D and
\[
F_R(t, x) = H(1, x) + t(H_R(x) - H(1, x)) \neq 0
\]
for \(t \in [0, 1] \) and \(x \in \partial D \). The compactness of \(N \) and condition (A) imply that \(B \) is compact and consequently

\[
F_R(t, x) = Ax + (1 - t)Bx + tN(Rx)/R
\]

is an admissible homotopy on \([0, 1] \times \partial D\) (cf. (4.2) in [2]). Hence,

\[
\deg(H_R, \partial D, 0) = \deg(H(1, \cdot), \partial D, 0) = \deg(H(0, \cdot), \partial D, 0) = \eta
\]

which implies that the equation \(H_R(x) = 0 \) is solvable in \(D \). □

Remark. When \(A \) is asymptotically linear, i.e., \(A(x) = B(x) + w(x), x \in X \), for some continuous and linear map \(B: X \rightarrow Y \) with \(w(x)/\|x\| \rightarrow 0 \) as \(\|x\| \rightarrow \infty \), then \(N \) is quasibounded with \(\|N\| = \|B\| \). Hence, Theorem 1 extends Theorem 4.5 in [2], which is, on the other hand, an abstract extension of some results of Nirenberg [9] involving everywhere bounded nonlinearities \(N \). Other extensions of Nirenberg’s results to sublinear or quasibounded nonlinearities are given in [1], [4], [5], [7], [8] (cf. [1] for other references).

Remark. If \(B \) in condition (A) is Lipschitz, i.e., \(\|Bx - By\| \leq k\|x - y\| \) for all \(x, y \in X \) and some small \(k > 0 \), then condition (1) in Theorem 2 can be replaced by the following easier to verify condition of Podolak [11]:

\[
(1') \|P_N(a \cdot x_0)\| \geq b \text{ for some positive } b \text{ and all } a \in R^n \text{ with } \|a\| = 1,
\]

where \(x_0 = \{x_{01}, \ldots, x_{0n}\} \) is a fixed basis for \(\ker A \) of unit vectors and

\[
a \cdot x_0 = a_1x_{01} + \cdots + a_nx_{0n}.
\]

In this sense Theorem 2 extends Theorem 1 in [11].

Let us now look at a new condition on \(P_N|_{X_1} \) which implies that \(\deg(P_N|_{X_1}, B(0, r), 0) \neq 0 \) with \(B(0, r) \subset X_1 \). Suppose that \(X \) and \(Y \) are such that there exist a map \(J: X_1 \rightarrow Y_1^* \) and a continuous and odd map \(G: X_1 \rightarrow Y_1 \) with \(Gx \neq 0 \) for \(x \neq 0 \) and \((Gx, Jx) = \|Gx\| \cdot \|Jx\| \) for all \(x \in X_1 \). This is always so if \(Y = X \) or \(Y = X^* \). Indeed, if \(Y_1 = X_1 \), as \(G \) and \(J \) we can take the identity and the normalized duality map, respectively; while, if \(Y_1 = X_1^* \) as \(G \) and \(J \) we can take the normalized duality map and the identity, respectively. The condition in question is:

\[
(4) \|P_Nx\| + (P_Nx, Jx)/\|Jx\| > 0 \text{ for } x \in \partial B(0, \rho), \rho \geq rM_f.
\]

Corollary 1. Let \(A \) and \(N \) satisfy conditions (1) and (2) of Theorem 1. Then, if condition (4) holds for all \(\rho \geq rM_f \) and the index of \(A \) is zero, equation (1) is solvable.

Proof. By Theorem 1 it suffices to show that \(\deg(P_N, B(0, \rho), 0) \neq 0 \), where \(P_N \) is restricted to \(\bar{B}(0, \rho) \). Define the homotopy \(H: [0, 1] \times \bar{B}(0, \rho) \rightarrow Y_1^* \) by \(H(t, x) = tP_Nx + (1 - t)Gx \). Then \(H(t, x) \neq 0 \) for \(t \in [0, 1] \) and \(x \in \partial B \). If not, then \(tP_Nx + (1 - t)Gx = 0 \) for some \(t \in [0, 1] \) and \(x \in \partial B \). Since \(t \neq 0,1 \), we have

\[
\|P_Nx\| + \frac{(P_Nx, Jx)}{\|Jx\|} = \frac{1 - t}{t} \|Gx\| - \frac{1 - t}{t} \frac{(Gx, Jx)}{\|Jx\|} = 0
\]
in contradiction with condition (4). By the oddness of G we obtain:
\[
\deg(PN, B(0, \rho), 0) = \deg(G, B(0, \rho), 0) \neq 0.
\]

Similarly, using Theorem 2, we obtain:

Corollary 2. Let K be asymptotically quasibounded and B satisfy conditions (1) and (2') of Theorem 2 with $f = 0$. Then, if ind $A = 0$ and PB satisfies condition (4) for $f = 0$, equation (1) is solvable for each f in Y.

Under a somewhat stronger condition than (4), we have:

Theorem 3. Let X and Y be Banach spaces with dim $X = \dim Y < \infty$ and let $T: X \to Y$ be continuous and satisfy
\[
(5) \quad \|Tx\| + \frac{(Tx, Jx)}{\|Jx\|} \to \infty \text{ as } \|x\| \to \infty, \text{ where } J \text{ and } G \text{ are as above.}
\]
Then $T(X) = Y$.

Proof. Let f in Y be fixed. By condition (5) there exists an $r_f > 0$ such that
\[
\|Tx - tf\| > 0 \quad \text{for } \|x\| = r_f, \quad t \in [0, 1]
\]
and
\[
\|Tx\| + \frac{(Tx, Jx)}{\|Jx\|} > 0 \quad \text{for } \|x\| = r_f.
\]
The first inequality implies that
\[
\deg(T - f, B(0, r_f), 0) = \deg(T, B(0, r_f), 0),
\]
which is nonzero by the second inequality as shown in Corollary 1. Hence, $Tx = f$ is solvable.

Remark. Along similar lines one can show that if $T: X \to X$ is continuous and compact (or condensing) and $I - T$ satisfies condition (5), then $(I - T)(X) = X$ (the proof will appear in a forthcoming paper by the author).

Condition (5) for PN clearly holds if PN is coercive on X_1, i.e.,
- if $(PNx, Jx)/\|Jx\| \to \infty$ as $\|x\| \to \infty$, $x \in X_1$, or
- if $(PNx, Jx) > c_1\|Jx\|$ for all $x \in X_1$ and some $c_1 > 0$ and $\|PNx\| \to \infty$ as $\|x\| \to \infty$, $x \in X_1$, and, in particular,
- if $\|PNx\| > c_2\|x\|^k$ for all $x \in X_1$ and some $c_2 > 0, k > 0$.

The last condition holds if N is k-homogeneous. Indeed, since $\|PNx\| \neq 0$ for $x \in \partial B(0, r) \subset X_1$,
\[
a = \min\{\|PNx\| \mid \|x\| = r\} > 0
\]
and $\|PNx\| > (a/r^k)\|x\|^k$ for all $\|x\| > r$.

In view of the above discussion, we have the following special case of Theorem 2.1 in [8]:

Theorem 4. Let $A: D(A) \subset X \to Y$ be a linear Fredholm map of index zero and $N: D \subset X \to X$ a continuous compact map, where D is open and bounded. Suppose that
- (i) $Ax \neq \lambda Nx$ for $x \in D(A) \cap \partial D$ and $\lambda \in (0, 1)$;
(ii) \(PNx \neq 0 \) for each \(x \in \ker A \cap \partial D \);
(iii) for some isomorphism \(L : Y_1 \to X_1 \),

\[
\|LPNx\| + \frac{(LPNx, Jx)}{\|Jx\|} > 0 \quad \text{for} \quad x \in \partial D \cap X_1
\]

with \(J \) the normalized duality map from \(X_1 \) to \(2^{X_1} \).

Then the equation \(Ax - \lambda Nx = 0 \) has at least one solution in \(D \) for each \(\lambda \in [0, 1] \).

Proof. It suffices to show (cf. [8]) that \(\deg (LP|_{X_1}, D \cap X_1, 0) \neq 0 \). But, this follows from condition (iii) as in Corollary 1 since \(I \) is odd. □

Remark. The above results could be proven by using the homotopy

\[
H(t, x) = (x^2 + tH(I - P)Nx - tf_2, PN(x_1 + tx_2) - tf_1)
\]

instead. Hence, it is sufficient to require that the map \(H(I - P)N : X \to X \) be compact or condensing. The same observation holds for Theorem 2 with \(N \) replaced by \(B \). Moreover, Theorem 2 of Podolak [11] can be shown to be valid for the nonlinearities considered in our Theorem 2.

References

Department of Mathematics, Université d’Ottawa, Ottawa, Ontario, Canada K1N 6N5

Current address: Departamento de Matemática, Universidade Federal de Minas Gerais, 30.000 Belo Horizonte, Brasil