On the dimension of product spaces and an example of M. Wage
HTML articles powered by AMS MathViewer
- by Teodor C. Przymusiński
- Proc. Amer. Math. Soc. 76 (1979), 315-321
- DOI: https://doi.org/10.1090/S0002-9939-1979-0537097-3
- PDF | Request permission
Abstract:
Modifying a recent example obtained under the assumption of the Continuum Hypothesis by Michael Wage, we prove, without any set-theoretic assumptions beyond ZFC, that for every natural number n there exists a separable and first countable space X such that: (a) ${X^n}$ is Lindelöf and $\dim {X^n} = 0$; (b) ${X^{n + 1}}$ is normal but $\dim {X^{n + 1}} > 0$. We obtain from this the following corollary. There exists a separable and first countable Lindelöf space X such that: (a) $\dim X = 0$; (b) ${X^2}$ is normal but $\dim {X^2} > 0$. The space X instead of being Lindelöf can be made locally compact and locally countable.References
- Eric K. van Douwen, A technique for constructing honest locally compact submetrizable examples, Topology Appl. 47 (1992), no. 3, 179–201. MR 1192308, DOI 10.1016/0166-8641(92)90029-Y
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- Yukihiro Kodama, On subset theorems and the dimension of products, Amer. J. Math. 91 (1969), 486–498. MR 243517, DOI 10.2307/2373521
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- Teodor C. Przymusiński, Normality and paracompactness in finite and countable Cartesian products, Fund. Math. 105 (1979/80), no. 2, 87–104. MR 561584, DOI 10.4064/fm-105-2-87-104
- Teodor C. Przymusiński, On the notion of $n$-cardinality, Proc. Amer. Math. Soc. 69 (1978), no. 2, 333–338. MR 491191, DOI 10.1090/S0002-9939-1978-0491191-3
- Michael L. Wage, The dimension of product spaces, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 10, 4671–4672. MR 507930, DOI 10.1073/pnas.75.10.4671
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 76 (1979), 315-321
- MSC: Primary 54F45; Secondary 54G20
- DOI: https://doi.org/10.1090/S0002-9939-1979-0537097-3
- MathSciNet review: 537097