THE COHOMOLOGY OF THE PROJECTIVE n-PLANE

WILLIAM A. THEDFORD

Abstract. An H-space is a topological space with a continuous multiplication and an identity element. In this paper X has the homotopy type of a countable CW-complex with integral cohomology of finite type and primitively generated k-cohomology, k a field. The projective n-plane of X is denoted XP(n). The main results of this paper are: Theorem 1 which states that \(H^*(XP(n)) = N \oplus S \) where \(N \) is a truncated polynomial algebra over k and S is a trivial k-ideal, and Theorem 2 which considers the case \(k = \mathbb{Z}(p) \) and states that \(H^*(XP(n)) = \tilde{N} \oplus \tilde{S} \) where \(\tilde{N} \) is a truncated polynomial algebra on generators in even dimensions and \(\tilde{S} \) is an \(A(p) \)-subalgebra of \(H^*(XP(n)) \) so that an \(A(p) \)-algebra structure can be induced on \(\tilde{N} \). These theorems extend results by A. Borel, W. Browder, M. Rothenberg, N. E. Steenrod, and E. Thomas.

0. Introduction. An H-space is a topological space with a continuous multiplication and an identity element. In [10] Stasheff defined the projective n-plane of an H-space. In this paper X has the homotopy type of a countable CW-complex with integral cohomology of finite type and primitively generated k-cohomology, k a field. The two main results of this paper pertain to the cohomology of the projective n-plane, XP(n), of an H-space, X. Theorem 1 states that

\[H^*(XP(n)) = N(m) \oplus S \]

where \(N(m) \) is a truncated polynomial algebra over k and \(S \cup H^*(XP(n)) = 0 \). Theorem 2 considers the case \(k = \mathbb{Z}(p) \) and states that

\[H^*(XP(n)) = \tilde{N}(n) \oplus \tilde{S} \]

where \(\tilde{N} \) is a truncated polynomial algebra on generators in even dimensions and \(\tilde{S} \) is an \(A(p) \)-subalgebra of \(H^*(XP(n)) \) so that an \(A(p) \)-algebra structure can be induced on \(\tilde{N} \). In a subsequent paper Theorem 2 will be used to study the action of the Steenrod algebra, \(A(p) \), on \(H^*(XP(n), \mathbb{Z}(p)) \), and \(H^*(X, \mathbb{Z}(p)) \).

In [2] William Browder and Emery Thomas studied the \(\mathbb{Z}(2) \)-cohomology of \(XP(2) \), and in [3] it was pointed out that Borel's methods can be used to obtain the \(\mathbb{Z}(p) \)-cohomology of \(XP(\infty) \) when it exists (if and only if the space has an associative multiplication [10]). Steenrod and Rothenberg...
studied $H^*(XP(n))$ for associative H-spaces in [9]. Theorems 1 and 2 extend the results of [2], [3], and [9] by considering $XP(n)$, $n > 2$, for H-spaces other than topological groups.

1. **Main results.** We begin with some notation. If V is a graded vector space over the field k, then V^o and V^e will denote the subspaces of odd and even dimensional elements respectively. The free commutative algebra generated by V is $U(V) = \Lambda(V^o) \otimes k(V^e)$ if char $k \neq 2$
and
$U(V) = k(V)$ if char $k = 2$.
The exterior algebra is denoted by Λ and $k(V)$ is the polynomial algebra. Let $U(V/t)$ be the truncated algebra of height t generated by V.

An A_n-structure on X, [10], is a quasi-fibration

$$p_n: (E(n), E(n-1), \ldots, X) \rightarrow (XP(n-1), XP(n-2), \ldots, *)$$
with fiber X. The space $E(m) = X \circ m \circ X$ is the m-fold join of X, [7], with the usual inclusion into $E(m+1)$, and $XP(m) = c_m$ the mapping cone of p_m which is p_n restricted to $E(m)$. Let T_m denote the vector space of primitive elements of $H^*(X)$ which are transgressive in the quasi-fibration

$$X \rightarrow E(m) \leftarrow XP(m - 1).$$
The set $x = \{x_i\}$ is a vectorspace basis for T_m. Let $y_i \in H^*(XP(m-1))$ be a transgression of x_i and $\otimes_m = \{y_i\}$. The mapping cone of p_m is $XP(m)$ and there is the exact cohomology sequence

$$\ldots \rightarrow H^{n-1}(E(m)) \xrightarrow{\delta} H^n(XP(m)) \rightarrow H^n(XP(m-1)) \xrightarrow{j^*} \ldots,$$

and j the inclusion of $XP(m-1)$ into $XP(m)$. Since $p^*_m(y_i) = 0$, choose $z_i \in H^*(P(m, X))$ to be such that $j^*(z_i) = y_i$ and $\otimes = \{z_i\}$. The element z_i will be called a $(m+1)$-transgression of x_i. Set $N(m) = U(Z/m + 1)$.

Theorem 1. If $H^*(X)$ is primitively generated and $XP(m)$ is defined, then there exists a trivial k-algebra S such that as k-algebras

$$H^*(XP(m)) \approx N(m) \oplus S.$$

More specific results are possible if $k = Z(p)$, p a prime. Let J be the ideal of $N(m)$ generated by the odd dimensional elements of $N(m)$ and $\tilde{N}(m)$ the subalgebra generated by \otimes, then $N(m) = \tilde{N}(m) \oplus J$. Define $\hat{S} = S \oplus J$.

Theorem 2. If $H^*(X)$ is primitively generated, $k = Z(p)$, and $XP(m)$ is defined, then \hat{S} is an $A(p)$-module and there is the vector space isomorphism

$$H^*(XP(m)) \approx \tilde{N}(m) \oplus \hat{S}$$
so that it is possible to induce an $A(p)$-algebra structure on $\tilde{N}(m)$.
2. Proof of Theorem 1. Theorem 1 is proved by induction starting with $P(1, X) = SX$, the reduced suspension of X. In [2] it was shown that the primitive elements are the 1-transgressive elements of $H^*(X)$ so that Theorem 1 is immediately satisfied for this case.

Induction hypothesis: $H^*(XP(n - 1)) = N' \oplus S'$ as in the theorem, where N' is generated by $\mathfrak{N}' \subseteq H^*(XP(n - 1))$, being constructed as \mathfrak{L} was above. Since the n-transgressive elements are $(n - 1)$-transgressive, we may choose $\mathfrak{N}' \supseteq \mathfrak{N}$.

Let D be a subspace of $H^*(X)$ complementary to $T_1 = T$ and let \mathfrak{X} be a basis for T. Since $H^q(X)$ is finite dimensional as a vector space for all q, we can choose a dual basis \mathfrak{X}' for $T^* \subseteq H_*(X)$ such that if $x_i \in \mathfrak{X}$ and $w_j \in \mathfrak{X}'$, then $\langle x_i, w_j \rangle = 1$ if $i = j$ and 0 otherwise.

Lemma 2.1. There is an isomorphism $f: \bigoplus H^*(X) \to H^*(E(n))$ such that if each x_i is primitive and transgresses to z_i, then

$$\delta(f(x_1 \otimes \cdots \otimes x_n)) = \delta(x_1 \ast \cdots \ast x_n) = \pm z_1 \cup \cdots \cup z_n.$$

The existence of an isomorphism is known from [7]. The formula is obtained from a direct application of Theorem (2.4) of [15].

Letting f^* be the dual of f, f^*: $\overline{H}_*(E(n)) \to \bigotimes H_*(X)$ is also an isomorphism. Now define $S' = f(S_2)$ where $S_2 = (T \otimes D) + (D \otimes T) + (D \otimes D)$ and $S_{j+1} = (T + D) \otimes S_j$. We then define $S = \delta(S')$.

We now show that $S \cap N = 0$ and that the products of less than $n + 1$ elements of Z are linearly independent. Let $z \in S \cap N$. Since $z \in N$, $z = \Sigma a_{i,j} \tilde{z}_{i,j}$ where $a_{i,j} \in k$, and

$$\tilde{z}_{i,j} = z_{i(1)} \cup \cdots \cup z_{i(j)}$$

is the product of j elements of Z. For convenience it is assumed that the cup product $\tilde{z}_{i,j}$ is taken in such a manner that the indices are nondecreasing from left to right. Since $z \in X$, there is $s \in S'$ such that $\delta(s) = z$, and therefore, $j^*(z) = 0$. Observe that $XP(n)$ is of category $n + 1$ so that $\tilde{z}_{i,m} = 0$ for $m > n$. Now $j^*(z) = y_i \in \mathfrak{Y}$ so $j^*(z) = \Sigma a_{i,j}y_{i,j}$. By the induction assumption, $a_{i,j} = 0$ for $j < n$; hence, $z = \Sigma a_{i,j} \tilde{z}_{i,j}$. By Lemma 2.1

$$\tilde{z}_{i,n} = \epsilon_{i,n} \delta(x_{i,n}), \quad \epsilon_{i,n} = \pm 1,$$

where $x_{i,n} = x_{i(1)} \ast \cdots \ast x_{i(n)}$. Let $a = \Sigma \epsilon_{i,n} a_{i,n} x_{i,n} \in H^*(E(n))$ so that $\delta(a) = \delta(s) = z$ and $\delta(a - s) = 0$. Let $c \in H^*(XP(n))$ be such that $p^*(c) = a - s$ and define

$$w_{j,n} = f^*^{-1}(w_{j(1)} \otimes \cdots \otimes w_{j(n)}) = w_{j(1)} \ast \cdots \ast w_{j(n)}.$$

Note that $\langle x_{i,n}, w_{i,n} \rangle = 1$ is each $i_k = j_k$ and is 0 otherwise. Let $\alpha = \deg w_{i(2)}$ and $\beta = \deg w_{i(2)}$. If $x' = w_{j,n} - (-1)^n \beta w_{i(2)} \ast w_{j(1)} \ast \cdots \ast w_{j(n)}$, then

$$\langle a - s, x' \rangle = \langle a, x' \rangle - \langle s, x' \rangle = \langle a, w_{i,n} \rangle = a_{i,n}.$$
Lemma 2.2. $p_\ast(x') = 0$.

Hence, $\langle a-s, x' \rangle = \langle p_\ast(c), x' \rangle = \langle c, p_\ast(x') \rangle = 0$ for $i_1 \neq i_2$ so that in this case $a_i, n = 0$. If deg $z_{i(1)}$ is odd, $p \neq 2$ and $i_1 = i_2$, then

$$z_{i(1)} \cup z_{i(2)} = -z_{i(1)} \cup z_{i(2)} = 0$$

so that $z_{i, n} = 0$.

Lemma 2.3. Let $i_1 = i_2$. If $p \neq 2$ and deg $w_{i(1)}$ is odd, or $p = 2$, then $p_\ast(w_{i, j}) = 0$.

Hence, $a_i, n = 0$ so that $z = 0$.

We next show that $H^\ast(XP(n)) = N + S$. If $x \in H^\ast(XP(n))$, then $j_\ast(z) \in N'$ so $j_\ast(z) = \sum a_i, j u_{i, j}$. Let $a = \sum a_i, j z_{i, j} \in N$, then $j_\ast(z - a) = 0$. Choose $s \in H^\ast(E(n))$ so that $a = s - a$. Now $\delta(s) = z - a$. If for $n = 2, f = f_2$ and for $n = k + 1, f = f_k, 1(f_k \otimes 1)$, then f will be an isomorphism for all n.

If $w \in H^\ast(E(n - 1))$ and $x \in H^\ast(X)$, then $w \otimes x = \delta(w \otimes X) \in H^\ast(E(n))$ as defined in [13]. By the way f_n was constructed, $f_n(w \otimes x) = w \otimes x$. Hence, we conclude that

$$f(x_{i(1)} \otimes \cdots \otimes x_{i(n)}) = x_{i(1)} \ast \cdots \ast x_{i(n)}$$

as required.

3. Proof of Theorem 2. Let T^0 be the linear subspace of $H^\ast(X)$ generated by X° the odd dimensional elements of X and define D^0 to be the linear subspace generated by D and X°, the even dimensional elements of X. Define $U_2 = (T^0 \otimes D^0) + (D^0 \otimes T^0) + (D^0 \otimes D^0)$ and $U_{r+1} = (T^0 + D^0) \otimes U_r$. Let $U' = f(U_n)$. If L^0 is the linear subspace of $H^\ast(XP(n))$ generated by L^0, then $\hat{S} = L + \delta(U')$. Notice that since $\hat{A}(p)$ is all in even degrees, $\hat{A}(p)(T^0) \subseteq T^0$. Now $U + (T^0 \otimes \cdots \otimes T^0) = \otimes X^\ast \hat{H}^\ast(X)$ and $T^0 \otimes \cdots \otimes T^0$ is an $\hat{A}(p)$-module. Hence, U has an $\hat{A}(p)$-module structure and consequently $\delta(f(U))$ is an $A(p)$-module. Since the elements of \hat{N} are all of even degree and L is all in odd degrees, $\hat{A}(p)(N) \cap N = \{0\}$. Hence, \hat{S} is an $A(p)$-module. By the Cartan formula, \hat{S} is an $\hat{A}(p)$-algebra.

4. Proof of lemmas. The proofs of Lemmas 2.1, 2.2, and 2.3 depend on the definitions of $E(n)$ and $XP(n)$ described in §1.

Proof of Lemma 2.1. Consider the Mayer-Vietoris sequence

$$\cdots \rightarrow H^\ast(E(n)) \rightarrow H^\ast(E(n - 1)) \oplus H^\ast(X) \rightarrow H^\ast(E(n - 1) \times X) \rightarrow \delta \rightarrow \cdots$$

The map δ is an epimorphism since $i = 0$. Since $\text{Ker} \delta = (H^\ast(E(n - 1)) \otimes k) + (k \otimes H^\ast(X)) \subseteq H^\ast(E(n - 1) \Lambda X)$, it is immediate that

$$f_n = \delta \eta_\ast: H^\ast(E(n - 1) \Lambda X) \rightarrow H^\ast(E(n))$$

is an isomorphism where $\eta: X \times X \rightarrow X \Lambda X$ is the quotient map. If for $n = 2, f = f_2$ and for $n = k + 1$, $f = f_k, 1(f_k \otimes 1)$, then f will be an isomorphism for all n.

If $w \in H^\ast(E(n - 1))$ and $x \in H^\ast(X)$, then $w \otimes x = \delta(w \otimes x) \in H^\ast(E(n))$ as defined in [13]. By the way f_n was constructed, $f_n(w \otimes x) = w \otimes x$. Hence, we conclude that

$$f(x_{i(1)} \otimes \cdots \otimes x_{i(n)}) = x_{i(1)} \ast \cdots \ast x_{i(n)}$$

as required.
Proof of Lemma 2.2. For \(n = 2 \) we have the Hopf construction \(p: X \circ X \to SX \). Let \((X \circ X, E, X') \) and \((SX, M, C)\) be the usual decompositions of these spaces, so that \(p \) is a map of these triples. Recall that \(p|X \times X = m \), the \(H \)-space multiplication. Now consider the diagram below

\[
\begin{array}{ccc}
H_*(X) \otimes H_*(X) \cong H_*(X \wedge X) & \leftrightarrow & H_*(X) \otimes H_*(X) \\
\eta_* & \downarrow m_* & \downarrow f^{-1} \\
H_*(X \times X) & \delta & H_*(X \circ X) \\
\downarrow m_* & \downarrow \sigma & \downarrow p_* \\
H_*(X) & & H_*(SX)
\end{array}
\]

where \(m_* \) is the Pontrjagin product. Let \(w_{(1)} \) and \(w_{(2)} \) \(\in \bar{H}_*(X) \), then since the diagram is commutative,

\[
p_*(x') = \sigma(m_*(w_{(1)}), w_{(2)}) - (-1)^{\deg(w_{(1)})\deg(w_{(2)})} m_*(w_{(1)}, w_{(2)}).
\]

Now since \(H^*(X) \) is primitively generated, \(H_*(X) \) has a commutative Pontrjagin product, [8], and \(p_*(w) = 0 \).

The proof can be completed by an induction argument using the fact that \(p \) is a map of triples.

Proof of Lemma 2.3. This is an induction argument very much like the one above. Let \(w = w_{(1)} = w_{(2)} \). By the proof of Lemma 2.2, \(p_*(w \circ w) = w^2 \). If the characteristic is 2, then \(w^2 = 0 \) since \(H_*(X) \) has a commutative Pontrjagin product. If the characteristic is not 2, then \(w \) is odd dimensional so that \(w^2 = -w^2 = 0 \). Using the decomposition of \(E(n) \) and \(P(n, X) \) mentioned above, an induction argument completes the proof of this lemma.

Bibliography

6. J. R. Hubbuck, Generalized cohomology operations and \(H \)-spaces of low rank (mimeographed).

Department of Mathematical Sciences, Virginia Commonwealth University, 901 W. Franklin St., Richmond, Virginia 23284

Current address: DOT/FAA/NAFEC, ANA-751, Bldg. 2, Atlantic City, New Jersey 08405