Weak limits of measures and the standard part map
HTML articles powered by AMS MathViewer
- by Peter A. Loeb
- Proc. Amer. Math. Soc. 77 (1979), 128-135
- DOI: https://doi.org/10.1090/S0002-9939-1979-0539645-6
- PDF | Request permission
Abstract:
A construction is given, using the standard part map st, of the ${\text {weak}^\ast }$ standard part of an internal Baire measure in the nonstandard extension of a compact Hausdorff space. It is shown that the inverse image with respect to st of a Borel set is universally measurable with respect to completions of the $\sigma$-algebra generated by internal Baire sets. Applications and extensions of these results to noncompact spaces are given.References
- Robert M. Anderson, A non-standard representation for Brownian motion and Itô integration, Israel J. Math. 25 (1976), no. 1-2, 15–46. MR 464380, DOI 10.1007/BF02756559 —, Star-finite representations of measure spaces (to appear).
- Robert M. Anderson and Salim Rashid, A nonstandard characterization of weak convergence, Proc. Amer. Math. Soc. 69 (1978), no. 2, 327–332. MR 480925, DOI 10.1090/S0002-9939-1978-0480925-X
- C. Ward Henson, Analytic sets, Baire sets and the standard part map, Canadian J. Math. 31 (1979), no. 3, 663–672. MR 536371, DOI 10.4153/CJM-1979-066-0
- L. L. Helms and P. A. Loeb, Applications of nonstandard analysis to spin models, J. Math. Anal. Appl. 69 (1979), no. 2, 341–352. MR 538222, DOI 10.1016/0022-247X(79)90147-1 G. Herglotz, Über Potenzreihen mit positivem, reellem Teil im Einheitskreis, Ber. Verhandl. Sächs Akad. Wiss. Leipzig Math.-Phys. Klasse 63 (1911), 501-511.
- Peter A. Loeb, A non-standard representation of measurable spaces, $L_{\infty }$, and $L^*_{\infty }$, Contributions to non-standard analysis (Sympos., Oberwolfach, 1970), Studies in Logic and the Foundations of Mathematics, Vol. 69, North-Holland, Amsterdam, 1972, pp. 65–80. MR 0482128
- Peter A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113–122. MR 390154, DOI 10.1090/S0002-9947-1975-0390154-8
- Peter A. Loeb, Applications of nonstandard analysis to ideal boundaries in potential theory, Israel J. Math. 25 (1976), no. 1-2, 154–187. MR 457757, DOI 10.1007/BF02756567
- Peter A. Loeb, A generalization of the Riesz-Herglotz theorem on representing measures, Proc. Amer. Math. Soc. 71 (1978), no. 1, 65–68. MR 588522, DOI 10.1090/S0002-9939-1978-0588522-2
- W. A. J. Luxemburg, A general theory of monads, Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967) Holt, Rinehart and Winston, New York, 1969, pp. 18–86. MR 0244931
- D. W. Müller, Nonstandard proofs of invariance principles in probability theory, Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967) Holt, Rinehart and Winston, New York, 1969, pp. 186–194. MR 0239645 S. Rashid, Economies with infinitely many traders, Ph.D. Dissertation, Yale University, May 1976.
- Frédéric Riesz, Sur certains systèmes singuliers d’équations intégrales, Ann. Sci. École Norm. Sup. (3) 28 (1911), 33–62 (French). MR 1509135
- Abraham Robinson, Non-standard analysis, North-Holland Publishing Co., Amsterdam, 1966. MR 0205854
- H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555
- K. D. Stroyan and W. A. J. Luxemburg, Introduction to the theory of infinitesimals, Pure and Applied Mathematics, No. 72, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0491163
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 128-135
- MSC: Primary 28A99; Secondary 03H05, 60B10
- DOI: https://doi.org/10.1090/S0002-9939-1979-0539645-6
- MathSciNet review: 539645