Finitely presented lattices
HTML articles powered by AMS MathViewer
- by Ralph Freese and J. B. Nation
- Proc. Amer. Math. Soc. 77 (1979), 174-178
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542080-8
- PDF | Request permission
Abstract:
It is shown that the generalized word problem for lattices is solvable. Moreover, one can recursively decide if two finitely presented lattices are isomorphic. It is also shown that the automorphism group of a finitely presented lattice is finite.References
- Richard A. Dean, Component subsets of the free lattice on $n$ generators, Proc. Amer. Math. Soc. 7 (1956), 220–226. MR 78957, DOI 10.1090/S0002-9939-1956-0078957-4
- Trevor Evans, The word problem for abstract algebras, J. London Math. Soc. 26 (1951), 64–71. MR 38958, DOI 10.1112/jlms/s1-26.1.64
- Trevor Evans, Word problems, Bull. Amer. Math. Soc. 84 (1978), no. 5, 789–802. MR 498063, DOI 10.1090/S0002-9904-1978-14516-9
- T. Evans and D. Y. Hong, The free modular lattice on four generators is not finitely presentable, Algebra Universalis 2 (1972), 284–285. MR 321823, DOI 10.1007/BF02945038
- M. M. Gluhov, On the problem of isomorphism of lattices, Soviet Math. Dokl. 1 (1960), 519–522. MR 0122737
- George Grätzer, Lattice theory. First concepts and distributive lattices, W. H. Freeman and Co., San Francisco, Calif., 1971. MR 0321817
- A. P. Huhn, On G. Grätzer’s problem concerning automorphisms of a finitely presented lattice, Algebra Universalis 5 (1975), 65–71. MR 392713, DOI 10.1007/BF02485232
- Ralph McKenzie, Equational bases and nonmodular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1–43. MR 313141, DOI 10.1090/S0002-9947-1972-0313141-1
- J. C. C. McKinsey, The decision problem for some classes of sentences without quantifiers, J. Symbolic Logic 8 (1943), 61–76. MR 8991, DOI 10.2307/2268172
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 174-178
- MSC: Primary 06B25; Secondary 03B25, 06B05
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542080-8
- MathSciNet review: 542080