An Abel-Tauber theorem on convolutions with the Möbius function
HTML articles powered by AMS MathViewer
- by J. L. Geluk
- Proc. Amer. Math. Soc. 77 (1979), 201-209
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542085-7
- PDF | Request permission
Abstract:
Suppose $n:{R^ + } \to {R^ + }$ and $n(x)/x$ is integrable on $(0,\infty )$. For $s > 0$ we define \[ \tilde n(s) = s\int _0^\infty {\frac {{{e^{ - us}}}}{{1 - {e^{ - us}}}}} n(u)du.\] In this paper an Abel-Tauber theorem is proved concerning this transform. Moreover the relation between $\tilde n(s)$ and ${\Sigma _{m \leqslant s}}n(s/m)/m$ is studied.References
- P. Erdős and S. L. Segal, A note on Ingham’s summation method, J. Number Theory 10 (1978), no. 1, 95–98. MR 480382, DOI 10.1016/0022-314X(78)90011-2
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
- L. de Haan, On regular variation and its application to the weak convergence of sample extremes, Mathematical Centre Tracts, vol. 32, Mathematisch Centrum, Amsterdam, 1970. MR 0286156
- Laurens de Haan, Equivalence classes of regularly varying functions, Stochastic Process. Appl. 2 (1974), 243–259. MR 365664, DOI 10.1016/0304-4149(74)90017-9
- Laurens de Haan, An Abel-Tauber theorem for Laplace transforms, J. London Math. Soc. (2) 13 (1976), no. 3, 537–542. MR 407542, DOI 10.1112/jlms/s2-13.3.537 G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 2nd ed., Clarendon Press, Oxford, 1945.
- A. E. Ingham, Some Tauberian theorems connected with the prime number theorem, J. London Math. Soc. 20 (1945), 171–180. MR 17392, DOI 10.1112/jlms/s1-20.3.171
- K. A. Jukes, Tauberian theorems of Landau-Ingham type, J. London Math. Soc. (2) 8 (1974), 570–576. MR 345919, DOI 10.1112/jlms/s2-8.3.570
- Eugene E. Kohlbecker, Weak asymptotic properties of partitions, Trans. Amer. Math. Soc. 88 (1958), 346–365. MR 95808, DOI 10.1090/S0002-9947-1958-0095808-9 E. G. H. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig-Berlin, 1909, reprint, Chelsea, New York, 1953.
- S. Parameswaran, Partition functions whose logarithms are slowly oscillating, Trans. Amer. Math. Soc. 100 (1961), 217–240. MR 140498, DOI 10.1090/S0002-9947-1961-0140498-X
- John W. Pratt, On interchanging limits and integrals, Ann. Math. Statist. 31 (1960), 74–77. MR 123673, DOI 10.1214/aoms/1177705988
- S. L. Segal, On convolutions with the Möbius function, Proc. Amer. Math. Soc. 34 (1972), 365–372. MR 299572, DOI 10.1090/S0002-9939-1972-0299572-2
- Sanford L. Segal, A general Tauberian theorem of Landau-Ingham type, Math. Z. 111 (1969), 159–167. MR 249379, DOI 10.1007/BF01111197
- S. L. Segal, Addendum to: “On Tauberian theorems of Landau-Ingham type” (J. London Math. Soc. (2) 8 (1974), 570–576) by K. A. Jukes, J. London Math. Soc. (2) 9 (1974/75), 360–362. MR 361521, DOI 10.1112/jlms/s2-9.2.360
- Eugene Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin-New York, 1976. MR 0453936, DOI 10.1007/BFb0079658
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 201-209
- MSC: Primary 40E05; Secondary 40G99
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542085-7
- MathSciNet review: 542085