The very well poised $_{6}\psi _{6}$
HTML articles powered by AMS MathViewer
- by Richard Askey and Mourad E. H. Ismail PDF
- Proc. Amer. Math. Soc. 77 (1979), 218-222 Request permission
Abstract:
A simple proof is given for Bailey’s sum of the very well poised $_6{\psi _6}$ and then this is shown to contain a q-extension of the partial fraction decomposition of $\csc \pi x$.References
- George E. Andrews, Applications of basic hypergeometric functions, SIAM Rev. 16 (1974), 441–484. MR 352557, DOI 10.1137/1016081
- George E. Andrews and Richard Askey, Enumeration of partitions: the role of Eulerian series and $q$-orthogonal polynomials, Higher combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976) NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., vol. 31, Reidel, Dordrecht-Boston, Mass., 1977, pp. 3–26. MR 519776
- Richard Askey, The $q$-gamma and $q$-beta functions, Applicable Anal. 8 (1978/79), no. 2, 125–141. MR 523950, DOI 10.1080/00036817808839221 W. N. Bailey, Generalized hypergeometric series, Cambridge Univ. Press, Cambridge, 1935. —, Series of hypergeometric type which are infinite in both directions, Quart. J. Math. Oxford Ser. 7 (1936), 105-115.
- Mourad E. H. Ismail, A simple proof of Ramanujan’s $_{1}\psi _{1}$ sum, Proc. Amer. Math. Soc. 63 (1977), no. 1, 185–186. MR 508183, DOI 10.1090/S0002-9939-1977-0508183-7 F. H. Jackson, On q-definite integrals, Quart. J. Pure and Appl. Math. 41 (1910), 193-203. C. G. J. Jacobi, Fundamenta nova theoriae functionum ellipticarum, Regiomontis, fratrum Borntragger, 1829.
- L. J. Slater, A new proof of Rogers’s transformations of infinite series, Proc. London Math. Soc. (2) 53 (1951), 460–475. MR 43235, DOI 10.1112/plms/s2-53.6.460 G. N. Watson, A new proof of the Rogers-Ramanujan identities, J. London Math. Soc. 4 (1929), 4-9.
Additional Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 218-222
- MSC: Primary 33A30
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542088-2
- MathSciNet review: 542088