## Eigenvalues and eigenfunctions of Riemannian manifolds

HTML articles powered by AMS MathViewer

- by Frieder-Jens Lange and Udo Simon
- Proc. Amer. Math. Soc.
**77**(1979), 237-242 - DOI: https://doi.org/10.1090/S0002-9939-1979-0542091-2
- PDF | Request permission

## Abstract:

S.-Y. Cheng [Proc. Amer. Soc.**55**(1976), 379-381] investigated closed two-dimensional Riemannian manifolds of genus zero which admit

*m*first eigenfunctions with constant square sum, $m > 1$. In this note, we will investigate

*n*-dimensional Riemannian manifolds with

*m*eigenfunctions, corresponding to the eigenvalue $\lambda$, and with constant square sum. Examples of such manifolds are minimal submanifolds of spheres. While Cheng investigated closed manifolds, most of our results have local character. We give lower bounds for $\lambda$ by curvature functions (scalar curvature, sectional curvature) and apply these results in two cases: (i) to characterize manifolds which are locally isometric to spheres; (ii) to the investigation of minimal submanifolds of spheres. These results extend earlier results of Lange and Simon.

## References

- Marcel Berger, Paul Gauduchon, and Edmond Mazet,
*Le spectre d’une variété riemannienne*, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR**0282313** - Shiu Yuen Cheng,
*A characterization of the $2$-sphere by eigenfunctions*, Proc. Amer. Math. Soc.**55**(1976), no. 2, 379–381. MR**405296**, DOI 10.1090/S0002-9939-1976-0405296-4 - Manfredo P. do Carmo and Nolan R. Wallach,
*Minimal immersions of spheres into spheres*, Ann. of Math. (2)**93**(1971), 43–62. MR**278318**, DOI 10.2307/1970752
F.-J. Lange, - Shoshichi Kobayashi and Katsumi Nomizu,
*Foundations of differential geometry. Vol I*, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR**0152974** - Morio Obata,
*Certain conditions for a Riemannian manifold to be isometric with a sphere*, J. Math. Soc. Japan**14**(1962), 333–340. MR**142086**, DOI 10.2969/jmsj/01430333 - Udo Simon,
*Isometries with spheres*, Math. Z.**153**(1977), no. 1, 23–27. MR**500714**, DOI 10.1007/BF01214730 - Udo Simon,
*Submanifolds with parallel mean curvature vector and the curvature of minimal submanifolds of spheres*, Arch. Math. (Basel)**29**(1977), no. 1, 106–112. MR**464118**, DOI 10.1007/BF01220381 - Udo Simon,
*Curvature bounds for the spectrum of closed Einstein spaces*, Canadian J. Math.**30**(1978), no. 5, 1087–1091. MR**500715**, DOI 10.4153/CJM-1978-091-8 - Tsunero Takahashi,
*Minimal immersions of Riemannian manifolds*, J. Math. Soc. Japan**18**(1966), 380–385. MR**198393**, DOI 10.2969/jmsj/01840380 - Kwoichi Tandai,
*Riemannian manifolds admitting more than $n-1$ linearly independent solutions of $\nabla ^{2}\rho +c^{2}\rho g=0$*, Hokkaido Math. J.**1**(1972), 12–15. MR**319084**, DOI 10.14492/hokmj/1381759031 - K. Yano and S. Bochner,
*Curvature and Betti numbers*, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, N. J., 1953. MR**0062505** - Shûkichi Tanno,
*On a lower bound of the second eigenvalue of the Laplacian on an Einstein space*, Colloq. Math.**39**(1978), no. 2, 285–288. MR**522369**, DOI 10.4064/cm-39-2-285-288

*Einige Integralformeln der Riemannschen Geometrie und ihre Anwendung auf Probleme der Flächentheorie*, Diplomarbeit Technische Universität Berlin, 1977.

## Bibliographic Information

- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**77**(1979), 237-242 - MSC: Primary 58G25; Secondary 53C25
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542091-2
- MathSciNet review: 542091