New decidable fields of algebraic numbers
HTML articles powered by AMS MathViewer
- by L. van den Dries
- Proc. Amer. Math. Soc. 77 (1979), 251-256
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542093-6
- PDF | Request permission
Abstract:
A formally real field of algebraic numbers is constructed which has decidable elementary theory and does not have a real closed or p-adically closed subfield.References
- L. van den Dries, Model theory of fields (Decidability, and bounds for polynomial ideals), Thesis, Utrecht, June, 1978.
- Ju. L. Eršov, Fields with a solvable theory, Dokl. Akad. Nauk SSSR 174 (1967), 19–20 (Russian). MR 0214575
- Simon Kochen, Integer valued rational functions over the $p$-adic numbers: A $p$-adic analogue of the theory of real fields, Number Theory (Proc. Sympos. Pure Math., Vol. XII, Houston, Tex., 1967) Amer. Math. Soc., Providence, R.I., 1969, pp. 57–73. MR 0257030
- Serge Lang, Diophantine geometry, Interscience Tracts in Pure and Applied Mathematics, No. 11, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0142550
- Handbook of mathematical logic, Studies in Logic and the Foundations of Mathematics, vol. 90, North-Holland Publishing Co., Amsterdam, 1977. Edited by Jon Barwise; With the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra. MR 457132
- Michael O. Rabin, Computable algebra, general theory and theory of computable fields, Trans. Amer. Math. Soc. 95 (1960), 341–360. MR 113807, DOI 10.1090/S0002-9947-1960-0113807-4
- Abraham Robinson, Metamathematical problems, J. Symbolic Logic 38 (1973), 500–516. MR 337471, DOI 10.2307/2273049 B. L. van der Waerden, Moderne algebra. I, Springer-Verlag, Berlin and New York, 1930.
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 251-256
- MSC: Primary 03C60; Secondary 03B25, 12L05
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542093-6
- MathSciNet review: 542093