Nonperfect spaces with point-countable bases
HTML articles powered by AMS MathViewer
- by Peter Davies
- Proc. Amer. Math. Soc. 77 (1979), 276-278
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542097-3
- PDF | Request permission
Abstract:
We construct a completely regular space of cardinality ${\aleph _1}$ with a point-countable base, which is not perfect. This answers a question of Fleissner and Reed. We also construct, under the hypothesis ${2^{{\aleph _0}}} < {2^{{\aleph _1}}}$, a hereditarily normal space of cardinality ${\aleph _1}$ with a $\sigma$-disjoint base, which is not perfect.References
- R. H. Bing, A translation of the normal Moore space conjecture, Proc. Amer. Math. Soc. 16 (1965), 612–619. MR 181976, DOI 10.1090/S0002-9939-1965-0181976-6
- J. Chaber, Metacompactness and the class MOBI, Fund. Math. 91 (1976), no. 3, 211–217. MR 415561, DOI 10.4064/fm-91-3-211-217
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- William Fleissner, Normal Moore spaces in the constructible universe, Proc. Amer. Math. Soc. 46 (1974), 294–298. MR 362240, DOI 10.1090/S0002-9939-1974-0362240-4
- William G. Fleissner and George M. Reed, Para-Lindelöf spaces and spaces with a $\sigma$-locally countable base, Topology Proc. 2 (1977), no. 1, 89–110 (1978). MR 540598
- Franklin D. Tall, On the existence of normal metacompact Moore spaces which are not metrizable, Canadian J. Math. 26 (1974), 1–6. MR 377823, DOI 10.4153/CJM-1974-001-8
- F. D. Tall, Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems, Dissertationes Math. (Rozprawy Mat.) 148 (1977), 53. MR 454913
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 276-278
- MSC: Primary 54E99; Secondary 03E35, 54G20
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542097-3
- MathSciNet review: 542097