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HYPERSPACES OF CONES AND FANS

CARL EBERHART AND SAM B. NADLER, JR.1

Abstract. In this paper we investigate the structure of the hyperspaces of

subcontinua of some nonlocally connected continua. It is shown that if A" is

either the cone over any infinite compact metric space or a fan with an

infinite number of endpoints, then the space of subcontinua containing the

vertex of X is homeomorphic to the Hubert cube. The hyperspace of

subcontinua of a smooth fan (i.e., a subcontinuum of the cone over the

Cantor set) is completely described. Also we discuss the question of when

two "nicely embedded" copies of the Hilbert cube in a hyperspace have a

Hilbert cube sum. In connection with this we describe two spaces, one

decomposable and one indecomposable, whose hyperspaces of continua are

homeomorphic.

1. Introduction. Let A" be a metric continuum and let Q(X) be the hyper-

space of all subcontinua of X topologized by the Hausdorff metric. Curtis

and Schori have proved that if AT is locally connected and contains no free

arc, then Q(X) is homeomorphic with the Hilbert cube Q [5]. The structure of

C(X) when X is nonlocally connected is not known except in a few specific

cases (for a discussion see [14]).

Recently Toruñczyk has given a short proof of the Curtis-Schori theorem

as an application of his characterization of 0-manifolds [16]. In [9], Torun-

czyk's characterization was used to show that intervals of continua, C(A, X),

in Q(X) are often homeomorphic with Q (note: &(A, X) denotes the sub-

space of G (A') consisting of all B E G(X) which contain A). For example if

X is the Cantor fan (i.e., the cone over the Cantor set) and v is the vertex of

X, then Q({v], X) « Q («s means is homeomorphic with). More generally,

the following result was shown in [9].

1.1. [9] Assume Y is a compact metric space such that the identity map on Y

can be approximated (in the sup metric) by maps f: Y -» Y such that f(Y) =£ Y.

Then Q({v), X) « Q, where X is the cone over Y and v is the vertex ofX.

In the next section we will improve 1.1 (see Theorem 2.2) and prove an

analogue for fans (see Theorem 2.3). In §3 we combine 2.3 with a theorem of

Anderson ([1] or [2]), 1.3 below, to construct a simple geometric model for the

full hyperspace 6(A") of any smooth fan X. As a corollary to the construction

we show that the hyperspaces of smooth fans are 6-determined [14].
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In §4, we state and discuss two Hilbert cube sum questions in hyperspaces.

Also we give examples of two spaces, one indecomposable and one decom-

posable, which have homeomorphic hyperspaces.

The principal facts about the Hilbert cube which we make use of are listed

here for convenience. A closed subset A of A is called a Z-set in X provided

the identity map on A can be approximated by maps /: A -» A such that

/(A) n A = 0.
1.2 (Toruñczyk's characterization of Q [16]). If X is a compact metric

absolute retract for which the identity map on X can be approximated by maps

whose ranges are Z-sets in X, then X «¿ Q.

1.3 (Anderson's homogeneity theorem [1]). If h: A -» B is a homeomor-

phism between Z-sets in Q, then h extends to a homeomorphism of Q onto Q.

1.4 (Handel's sum theorem [12]). IfApaB^Q^iAnB and A n B is a

Z-set in A, then A u B « Q.

2. Vertex intervals. We regard the cone over a compact metric space Y as

the quotient space A = Y X [0, 1]/ Y X {1}. The vertex of X is the point

v = F X {1}. For 0 < / < 1, A, will be the closed neighborhood Y X

[t, 1]/ Y X {1} of v in A. In 2.2 below we extend 1.1 to full generality;

however, first we need a lemma.

2.1. Lemma. Assume Y is a compact metric space with an infinite number of

points. Then either Y satisfies the hypothesis of 1.1 or Y contants a proper closed

subset which intersects each component of Y.

Proof. Assume Y does not satisfy the hypothesis of 1.1. We will show that

for some e > 0 only finitely many components have diameter less than e. If

no such e exists, then by the compactness of Y, there is a sequence of distinct

components of Y converging to a singleton { y0}- Now let e > 0 be given and

choose two distinct components Cx and C2 of Y which he in the e-neighbor-

hood Ne(y0) ofy0. Now choose an open and closed set U containing C, u C2

and contained in Ae(y0), and let/: y-> Y be the retraction collapsing U to a

point and leaving each point outside U fixed. Since f(Y) ¥= Y and/moves no

point as much as 2e, Y satisfies the hypothesis of 1.1, contrary to assumption.

Hence we assume e > 0 has been chosen so that only finitely many compo-

nents of Y have diameter less than e. Denote these components by Cx,

C2, . . ., C„, and choose points p, E C, for /' = 1, 2, . . . , «. If Y = U ?_, C¡,

the set [px,p2, ... ,p„) is a proper closed subset (Y is infinite) which meets

each component of Y. If Y =£ U "_i C„ choose p G Y\ U ?_i C, and choose

o > 0 so that 5 < e/2 and Ns(p) G ( Y\ U ?_, Q. Let C be any component

of Y which meets Ns(p). Then C also meets Y\Ns(p) since diam C > e >

diam Ng(p). Hence Y\Ns(p) is a proper closed subset of Y which meets each

component of Y, and the proof of 2.1 is complete.
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2.2. Theorem. Suppose Y is a compact metric space with an infinite number

of points. Then Q({v], X) «s Q, where X is the cone over Y and v is the vertex

ofX.

Proof. Assume Y does not satisfy the hypothesis of 1.1. Fix 0 < t < 1. We

will show that the interval Q(X„ X) is a Z-set in Q({v), X). Then, since

Q({v), X) is an absolute retract [9] and the map /, from G({v}, X) to

&(Xt, X) given by f,(A) = A u X, approximates the identity on C({v), X) as

f-*l, it follows from 1.2 that Q({v), X) m Q. Choose, by 2.1, a proper

closed subset K of Y which intersects each component of Y. For each s,

t < s < 1, define a subcontinuum Ks of X as follows:

Ks = {v}u(Kx[s,l))\j(Yx{s}).

Let 8 > 0 and choose s so close to 1 that diam Xs < 8. Define a function gs

one({u},A")by

g,(A) = (A UXS)\(XS\KS).

It can be shown (see Lemma 3 of [9]) that gs is continuous from Q({v), X)

into 6({x}, A") \ G(X„ X) and is within 8 of the identity on G({v), X). Thus

we conclude that G(X,, X) is a Z-set in G({v}, X). This completes the proof

of 2.2.

The cone over a compact totally disconnected metric space is a special type

of fan. In general, a fan [3] is defined to be a hereditarily unicoherent, arcwise

connected metric space which contains exactly one ramification point (the

common part of three otherwise disjoint arcs), called the top of X. If x,

y G X, a fan, then [x,y] denotes the unique arc x to y in X (see [3]). An

endpoint of a fan A" is a point e E X such that e is not a cutpoint of any arc in

X. The following is an analogue of 2.2 for fans.

2.3. Theorem. Let X be a fan with an infinite number of endpoints and let t

be the top of X. Then G({t}, X) « Q.

Proof. J. B. Fúgate has shown that for each e > 0 there is a retraction rt:

X -> X such that d(x, re(x)) < e for all x G X and rc(X) is a fan with finitely

many endpoints [11]. Hence the induced map re: Q(X)-+Q(X) given by

re(A) = [re(a)\a E A) is within e of the identity on C(X) and takes the

interval Q({t), X) into itself. We will show that re(G({t], X)) is a Z-set in

Q({t), X); the theorem then follows from 1.2 since 6({r), A") is an absolute

retract.

Since re(X) has only finitely many endpoints, there is an endpoint e of X

such that the arc [t, e] from t to e in X intersects re(X) only at t. For each

s G [t, e] with s^t, define a map fs from Q({t},X) into 6({t},X) by

fs(A) = A u [t, s]. Clearly the maps/ approximate the identity on 6({f}, A")

as s -> t; further, the range of/ misses rt(Q({t], X)). Hence ft(Q({t), X)) is a

Z-set in 6({f}, A") and the proof of  2.3 is complete.
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3. Hyperspaces of smooth fans. A fan A with top t is said to be smooth [3]

provided that if {x„} is a sequence in A converging to a point x E X, then

the sequence {[t, xj} of arcs in A converges in 6(A) to the arc [t, x]. For

example, the cone over a compact totally disconnected metric space is easily

seen to be a smooth fan. Conversely, it is shown in [10] that every smooth fan

is homeomorphic with a subcontinuum of the Cantor fan.

In [7, p. 248], Duda has observed that if A is an «-odd (i.e. the cone over «

points, 2 < n < oo) then G(X) is homeomorphic with an «-cell to the surface

of which « 2-cells are attached along a standardly embedded «-odd. We

describe this model for G(X) more precisely in 3.2 below, where we show that

it has a straightforward generalization to the hyperspace of any smooth fan.

To establish some notation, let A be a smooth fan with top t and endpoints

{ea\a G A}. It follows from the definition of smoothness that the set

N[G(X)] = {[i,x]|xEA}

is a homeomorphic copy of A in G(X) (the homeomorphism is the map

x -» [t, x]). We call N[G(X)] the natural part of G(X). It is also a con-

sequence of the smoothness of A that the set

t[G(x)]= Uß([',*„])
«eA

is a closed subspace of (2(A). Furthermore, the hyperspaces G([t, ea]), which

are 2-cells, are pairwise disjoint except for {/}, which they all have in

common. We call F[6(A)] the closure of the two-dimensional part of &(X).

(Compare with Duda [6, p. 279].) We have the following structure theorem.

3.1. Theorem. Let X be a smooth fan with top t and let N[G(X)] and

T[G(X)] be as defined above. Then

(1) G(X) = G({t), X) u T[G(X)];
(2) G({t), X) n T[G(X)] = N[G(X)] and N[G(X)] is a Z-set in

6({i},A);
(3) // A has infinitely many (respectively, exactly «, 2 < « < oo) endpoints,

then G({t), X) « Q (respectively G({t), X) « /");

(4) T[G(X)\ s» (A X [0, 1 ])/({/} X [0, 1]), the quotient space obtained from

X X [0,1] by shrinking {t} X [0, 1] to a point.

Proof. (1) is clear since each A G 6(A) either contains / or is contained in

some arc [t, ea]. The equality in (2) is obvious. The fact that A[C(A)] is a

Z-set in G({t), X) can be seen as follows. Regard A as a subcontinuum of the

Cantor fan C X [0, 1]/C X {1}, where C is the Cantor set. Then for 0 < e <

1, the map/e: G({t), X) -* G({t), X) \ N[G(X)) given by ft(A) = A u (C,_«
n A), where C,_e is the subcontinuum C X [1 - e, l]/C X {1} of the

Cantor fan, approximates the identity on G({t), X) as e -» 1. This completes

the proof of (2).

The infinite case of (3) follows from 2.3; the finite case can be established
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directly by the homeomorphism A: X"_, [t, e,]-» ß({r), A~) defined by

A(x„ x2, . . .,x„) = U U\\t>xil
Proof of (4). Since X embeds in the Cantor fan, we can regard X as

embedded in the place so that t = (0, 0) and each of the arcs [t, ea] in A" is a

convex segment. Define a function/from X X [0, 1] to T[Q(X)] by fix, s) =

[sx, x]. It is easily verified that / is a mapping of A" x [0, 1] onto T[Q(X)]

whose only nondegenerate point inverse is /_1({f}) = {t} X [0, 1]. Hence

T[6(X)] is homeomorphic with the quotient space X X [0, l]/{t) X [0, 1].

This completes the argument for 3.1.

In the proof of (4) above, note that N[ß(X)] « X is naturally identified

with the subspace {/_1(0) U {{(x, 0)}|x ¥= t) of the quotient space P = X

X [0, l]/{f} X [0, 1]. Denote this subspace by A,,. The next result shows how

to realize the hyperspace G(X) of a smooth fan X by attaching P to a cell

(either Q or /") along a nicely embedded copy of X0. We follow Dugundji's

terminology for attaching maps [8].

3.2. Theorem. Let X be a smooth fan and let P and X0 be as above. Then:

(1) If X has an infinite number of endpoints, let A: Ar0-» Q be any embedding

of X0 as a Z-set in Q. Then the space obtained by attaching P to Q along X0

with the attaching map A is homeomorphic with Q(X); that is, Putß«

G(X).
(2) If X has n endpoints, 2 < n < oo, let A be an embedding of X0 into the

boundary of I" (« S"~x) which is tame in the sense that there is a homeomor-

phism of the boundary of I" onto itself taking h(X0) to an n-odd whose arcs

[t, e¡] are convex. Then P uh I" « G(X).

Proof of (1). Let/* be the homeomorphism of T[G(X)] onto P induced by

the map/defined in the proof of (4) of 3.1. Clearly/* takes N[G(X)] onto A",,.

Now the composition hf* then takes the Z-set N[Q(X)] in the Hubert cube

6({f}, A") (see 3.1(2) and 2.3) homeomorphically onto the Z-set A(A"0) in the

Hubert cube Q. Hence, by 1.3, hf* extends to a homeomorphism k: Q({t), X)

-» Q. Let p be the quotient map from the free union of P and Q, P + Q, to

P u h Q. Then it follows using (1) and (2) of 3.1 that the formula

8{ \pk(A)     ifAEe({t},X)

defines a homeomorphism from G(X) onto P KJnQ.

Proof of (2). In /" = X "_, [0, 1], realize X as the union of the edges

E¡ = {(xx, x2,. .., xn)\Xj = 0 if j + i, 0 < x, < 1}. Then C({t), X) maps

homeomorphically onto /" by the map P(A) = (x,, . . ., x„) wherep.(A n E¡)

= [0, x,] and p¡ is the projection of /" onto the t'th coordinate interval. By

hypothesis there exists a homeomorphism k from the boundary of /" onto

itself which takesp(X) onto A(A"0). Extend A to a homeomorphism k* from /"

onto itself (this is clearly possible). As in the proof of (1), let f* be the

homeomorphism from T[Q(X)] onto P and let p: P + I" -» P u h I" be the
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quotient map. Use (1) and (2) of 3.1 to deduce that the formula

\pk*(A)    UAGG({t),X)

defines a homeomorphism of 6(A) onto P \JhIn. This completes the proof

of 3.2.

It is interesting to note that, in the proof of 3.2, more care must be taken

with the attaching homeomorphism « in the finite case than in the infinite

case. This is because it is possible to embed the arc in nonequivalent ways

into the boundary of /" as long as 3 < n < oo. Such nonequivalent embed-

dings are not possible in the case « = 3 because of the Schoenflies theorem

and in the infinite case because of Anderson's Theorem 1.3.

With the aid of 3.2, we can construct a particularly simple geometric model

for 6(A), A a smooth fan, we describe when A has an infinite number of

endpoints. Regard A as embedded in the Hubert cube Q = X ,~ x [0, 1] so

that the projection p¡ of A onto the ith coordinate interval is {0} for i > 2.

Further assume that each of the arcs [/, ea] in A is convex (i.e., sx G[t, x] for

0 < s < 1 and x E A) and has length < 1. For each A G F[6(A)], define

M(A) to be the point of A such that A c [t, M(A)] and 1(A) = inf{d(t, x)\x

E A). It is readily seen that M and I are continuous functions which together

separate the points of F[6(A)]. Hence the map «: F[6(A)]-»[0, I] X Q

given by h(A) = (1(A), M(A)) is an embeddng which takes A[6(A)] onto

{0} X A which is a Z-set in {0} X Q. So the subset «(F[6(A)]) u {0} X Q

is homeomorphic with 6(A), by 3.2(1). (See Figure 1.)

We conclude our study of the hyperspace of a smooth fan with the

following corollary. In the terminology of [14, 0.61] it says that the members

of the class of smooth fans are 6-determined. Thus it provides information

concerning a question in [14, 0.62].

Figure 1
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3.3. Corollary. If Xx and X2 are smooth fans with G(XX) « G(X^, then

A, «¿ X2.

Proof. Let tx and t2 denote the tops of Xx and A2, respectively, and let h:

Q(XX) -> 6(A2) be a homeomorphism. It follows from 3.1 that «(6({r,}, A,))

= G({t2), X2) and h(T[G(Xx)]) = T^X^]. Hence by (2) of 3.1,

h(N[G(Xx)]) = A[6(A2)]. Therefore since A[6(A,)] « A,., i = 1, 2, A, « A2.

This proves 3.3.

It would be interesting to know if the class of fans is 6-determined.

4. Two Hubert cube sum questions for hyperspaces. In [1], Anderson

conjectured that if Qx, Q2 and Qx n Q2 are Hubert cubes, then Qx u Q2 is a

Hubert cube. He verified this for the case when Qx n Q2 is a Z-set in each of

Qx and Q2 [1]. Handel has shown that Qx n Q2 need only be a Z-set in Qx

(see 1.4), and Sher's example [15] indicates that Handel's result may be the

best possible in the general setting. In this section we will inquire into the

extent to which Anderson's conjecture holds when Qx and Q2 are embedded

nicely in some hyperspace. Specifically we ask the following two questions.

4.1. Question. Let p, q G X, a metric continuum, and assume that G({p), A),

G({q), X) and G({p), X) n G({q), X) are Hilbert cubes. Is G({p), X) u

G({q),X) a Hilbert cubel

We call a closed subset & of 6(A) convex in 6(A) if A, B G & and

A Ç C G B, C E 6(A) implies that C G <£. Intervals of continua are special

types of convex sets, and 4.1 can be asked more generally:

4.2. Question. Assume & and 'S are convex sets in 6(A) such that &, 'S and

& D 'S are Hilbert cubes. Then isSuia Hilbert cube!

The answer to 4.1 in the case when A is a Peano continuum which contains

no local outpoints is yes and can be proved using a lemma of Curtis [4].

4.3. Theorem. Let X be a Peano continuum which contains no local cutpoint.

Then if p, q G X, G({p), X) u G({q), X) is a Hilbert cube.

Proof. Note first that A does not contain a free arc and we know that

G({p), X) and G({q], X) are Hilbert cubes from [5] or [9]. The fact that

G({p), X) n G({q), X) is a Hilbert cube can be shown using the argument

in Theorem 4 of [9]. Then we apply Lemma 2.1 of [4] to conclude that

G({p), X) n G({q), X) is a Z-set in G({p), A), and so by Handel's sum

theorem 1.4, G({p), X) u G({q), X) is a Hilbert cube.

To illustrate that 4.1 and 4.2 can hold for A nonlocally connected, we

describe two examples.

4.4. Example. Let A, and A2 be copies of the Cantor fan with vertices p

and q respectively constructed in the plane so thatp is an endpoint of A2, q is

an endpoint of A, and Xx n A2 is an arc [p, q] with endpoints p and q (see

Figure 2).
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Figure 2

Thus the space X = Xx u X2 is a dendroid which is not locally connected

at any point. It is readily verified using 6 of [9] that 6({/>}, A") and Q({q), X)

are both Hilbert cubes. Then, using the fact that Q([p, q], X) is homeomor-

phic with the interval of continua containing the point [p, q] in the quotient

space X/[p, q], it is easy to see that Q({p), X) n &({q}, X), which is

6([p, q], X), is a Hilbert cube. We will show that ß({p), X) u C({q}, X) is

a Hilbert cube. To see this let & be the closure of &({p), X) \ 6({q}, X) in

G(X). Clearly â = ß({/>}, Xx) « Q. Also & n 6({q}, X) = 6([p, q], Xx) «
Q. To complete the argument we need only show, by 1.4, that £E n Q({q), X)

is a Z-set in 6({q), X). So for each e > 0, choose an arc Ae in X2 \ [p, q) of

diameter less than e and having q as one endpoint. Then the maps /e:

6({q}, X) -> 6({q}, X) defined by ft(A) = A u Ae demonstrate that & n

6({q), X) is a Z-set in Q({q}, X). (Note: & n 6({?}, X) is also a Z-set in

6({p], Xx); however, Q({p), X) n Q({q}, X) is not a Z-set in either

Q({p), X) or 6({#), A") since its interior in each is nonvoid.)

We remark that it is possible to construct, using the above observations and

techniques analogous to those in §3, a geometric model for the full hyper-

space 3(X) of the space X in 4.4.

A topological property is said to be ß-determined if whenever X has the

property and 6(A") ^ Q(Y), then Y has the property. For example, local

connectedness is 6-determined as is hereditary indecomposability [14, 1.61].

The following example shows that decomposability is not 6 -determined. We

include the example here since the verifications in the example are related to

4.2.

4.5. Example. Let Y denote the indecomposable continuum as described in

[13, p. 205]. We modify Y in the following way. Let A = [a, b] be an arc in Y

with endpoints a and b, and let {x„} be a monotone sequence in [a, b]

converging to a. Let A", be the quotient space obtained from Y by identifying

all the odd terms of {x„} with a and sewing each arc [x2n+x, x2n+2] to the arc

[*2n+2> x2n+3\ in reverse order. Let X2 be the unit disk and let X be the space
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obtained by attaching a boundary point of A2 to the point a of A,. (See

Figure 3.)

Figure 3

Clearly the continuum A, is indecomposable while the continuum A is

decomposable. We will show that 6(A) m 6 (A,).

First we note that 6(A) decomposes into 6(A,) u G({a), X) u G(X¿

with G({a), X) intersecting 6(A,) and G(X2) in G({a), Xx) and G({a), X¿,

respectively. Now 6(A2) « Q by [5] and G({a), A) « g by [9]. Also G(X2)

D G({a}, X) = Q({a), XJ « Q by [9], and using the maps/,: G({a), X) -»

G({a},X)\G({a},X2) given by fn(A) = A u [x2n+1, x2„+2] we see that

G({a), X2) is a Z-set in G({a), A). Hence by 1.4 &({a), X) u G(XJ «s Q.

For each «, let/,: A, -» Aj be a retraction such that the arc [x2n+1, x2n+2]

meets/,(A,) only in the point x2n+1 = a. Clearly we can choose the maps/,

so that f„-*lx as «-»oo. Thus the induced maps f¡¡: G({a), Xx)-*

G({a), Xx) are Z-maps which approach the identity on G({a}, A,). Hence by

1.2 G({a), Xx) fía Q. In addition it can be seen that the setsfi(G({a}, A,)) he

in the interior of Q({a), A,) relative to 6(A,). Hence the boundary 'S of

G({a), A,) in G(XX) is a Z-set in G({a), A,). But also % is a Z-set in

G({a], X) u 6(A2). To see this, extend/, to g„: X -» X by defining g„(x) = x

if x E A2 and note that the induced map g*: G({a), X) u G(X2) -»

G({a), X) u 6(A2) approaches the identity on G({a), X) u G(X2) as « -*

oo, and that im g* n % ¥= 0.

Now by 1.3, there is a homeomorphism « from G({a), X) u 6(Aj) onto

G({a), Aj) which is the identity on 'S. Extend « by the identity to all of

6(A). This completes the discussion of 4.5.
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