Hyperspaces of cones and fans
HTML articles powered by AMS MathViewer
- by Carl Eberhart and Sam B. Nadler
- Proc. Amer. Math. Soc. 77 (1979), 279-288
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542098-5
- PDF | Request permission
Abstract:
In this paper we investigate the structure of the hyperspaces of subcontinua of some nonlocally connected continua. It is shown that if X is either the cone over any infinite compact metric space or a fan with an infinite number of endpoints, then the space of subcontinua containing the vertex of X is homeomorphic to the Hilbert cube. The hyperspace of subcontinua of a smooth fan (i.e., a subcontinuum of the cone over the Cantor set) is completely described. Also we discuss the question of when two “nicely embedded” copies of the Hilbert cube in a hyperspace have a Hilbert cube sum. In connection with this we describe two spaces, one decomposable and one indecomposable, whose hyperspaces of continua are homeomorphic.References
- R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200–216. MR 205212, DOI 10.1090/S0002-9947-1967-0205212-3
- T. A. Chapman, Lectures on Hilbert cube manifolds, Regional Conference Series in Mathematics, No. 28, American Mathematical Society, Providence, R.I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975. MR 0423357
- J. J. Charatonik, On fans, Dissertationes Math. (Rozprawy Mat.) 54 (1967), 39. MR 227944
- D. W. Curtis, Hyperspaces of noncompact metric spaces, Compositio Math. 40 (1980), no. 2, 139–152. MR 563538
- D. W. Curtis and R. M. Schori, Hyperspaces of Peano continua are Hilbert cubes, Fund. Math. 101 (1978), no. 1, 19–38. MR 512241, DOI 10.4064/fm-101-1-19-38
- R. Duda, On the hyperspace of subcontinua of a finite graph. I, Fund. Math. 62 (1968), 265–286. MR 236881, DOI 10.4064/fm-62-3-265-286
- R. Duda, On the hyperspace of subcontinua of a finite graph. I, Fund. Math. 62 (1968), 265–286. MR 236881, DOI 10.4064/fm-62-3-265-286
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Carl Eberhart, Intervals of continua which are Hilbert cubes, Proc. Amer. Math. Soc. 68 (1978), no. 2, 220–224. MR 480197, DOI 10.1090/S0002-9939-1978-0480197-6
- Carl Eberhart, A note on smooth fans, Colloq. Math. 20 (1969), 89–90. MR 243488, DOI 10.4064/cm-20-1-89-90
- J. B. Fugate, Retracting fans onto finite fans, Fund. Math. 71 (1971), no. 2, 113–125. MR 296904, DOI 10.4064/fm-71-2-113-125
- Michael Handel, On certain sums of Hilbert cubes, General Topology and Appl. 9 (1978), no. 1, 19–28. MR 482774
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751 S. B. Nadler, Jr., Hyperspaces of sets—A text with research questions, Pure and Applied Math. Series, vol. 49, Marcel Dekker, New York, 1978.
- R. B. Sher, The union of two Hilbert cubes meeting in a Hilbert cube need not be a Hilbert cube, Proc. Amer. Math. Soc. 63 (1977), no. 1, 150–152. MR 645402, DOI 10.1090/S0002-9939-1977-0645402-0 H. Toruńczyk, On CE-images of the Hilbert cube and characterizations of Q-manifolds (preprint).
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 279-288
- MSC: Primary 54B20; Secondary 54F20, 54F50
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542098-5
- MathSciNet review: 542098