## Examples of higher-dimensional slice knots which are not ribbon knots

HTML articles powered by AMS MathViewer

- by L. R. Hitt PDF
- Proc. Amer. Math. Soc.
**77**(1979), 291-297 Request permission

## Abstract:

A definition for ribbon*n*-knot is given which reduces to the previously studied definitions for $n = 1$ and $n = 2$. It is shown that for each $n \geqslant 2$ there is a slice

*n*-knot which is not a ribbon

*n*-knot.

## References

- R. H. Fox,
*A quick trip through knot theory*, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR**0140099** - R. H. Fox,
*Some problems in knot theory*, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 168–176. MR**0140100**
L. R. Hitt, - Michel A. Kervaire,
*Les nœuds de dimensions supérieures*, Bull. Soc. Math. France**93**(1965), 225–271 (French). MR**189052** - J. Levine,
*Polynomial invariants of knots of codimension two*, Ann. of Math. (2)**84**(1966), 537–554. MR**200922**, DOI 10.2307/1970459 - John W. Milnor,
*Infinite cyclic coverings*, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115–133. MR**0242163**
D. Roseman, - Horst Schubert,
*Knoten mit zwei Brücken*, Math. Z.**65**(1956), 133–170 (German). MR**82104**, DOI 10.1007/BF01473875 - Y. Shinohara and D. W. Sumners,
*Homology invariants of cyclic coverings with application to links*, Trans. Amer. Math. Soc.**163**(1972), 101–121. MR**284999**, DOI 10.1090/S0002-9947-1972-0284999-X - D. W. Sumners,
*$H_{2}$ of the commutator subgroup of a knot group*, Proc. Amer. Math. Soc.**28**(1971), 319–320. MR**275416**, DOI 10.1090/S0002-9939-1971-0275416-9
—, - Takeshi Yajima,
*On simply knotted spheres in $R^{4}$*, Osaka Math. J.**1**(1964), 133–152. MR**172280** - Takaaki Yanagawa,
*On ribbon $2$-knots. The $3$-manifold bounded by the $2$-knots*, Osaka Math. J.**6**(1969), 447–464. MR**266193** - E. C. Zeeman,
*Twisting spun knots*, Trans. Amer. Math. Soc.**115**(1965), 471–495. MR**195085**, DOI 10.1090/S0002-9947-1965-0195085-8

*Handlebody presentations of knot cobordisms*, Ph. D. Dissertation, Florida State University, 1977. —,

*Ribbon n-knots*, preprint, University of South Alabama.

*Ribbon knots*, preprint, University of Iowa.

*The effect of spinning and twist spinning on some knot invariants*, preprint, Florida State University.

## Additional Information

- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**77**(1979), 291-297 - MSC: Primary 57Q45
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542100-0
- MathSciNet review: 542100