Examples of higher-dimensional slice knots which are not ribbon knots
HTML articles powered by AMS MathViewer
- by L. R. Hitt
- Proc. Amer. Math. Soc. 77 (1979), 291-297
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542100-0
- PDF | Request permission
Abstract:
A definition for ribbon n-knot is given which reduces to the previously studied definitions for $n = 1$ and $n = 2$. It is shown that for each $n \geqslant 2$ there is a slice n-knot which is not a ribbon n-knot.References
- R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR 0140099
- R. H. Fox, Some problems in knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 168–176. MR 0140100 L. R. Hitt, Handlebody presentations of knot cobordisms, Ph. D. Dissertation, Florida State University, 1977. —, Ribbon n-knots, preprint, University of South Alabama.
- Michel A. Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225–271 (French). MR 189052
- J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537–554. MR 200922, DOI 10.2307/1970459
- John W. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115–133. MR 0242163 D. Roseman, Ribbon knots, preprint, University of Iowa.
- Horst Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1956), 133–170 (German). MR 82104, DOI 10.1007/BF01473875
- Y. Shinohara and D. W. Sumners, Homology invariants of cyclic coverings with application to links, Trans. Amer. Math. Soc. 163 (1972), 101–121. MR 284999, DOI 10.1090/S0002-9947-1972-0284999-X
- D. W. Sumners, $H_{2}$ of the commutator subgroup of a knot group, Proc. Amer. Math. Soc. 28 (1971), 319–320. MR 275416, DOI 10.1090/S0002-9939-1971-0275416-9 —, The effect of spinning and twist spinning on some knot invariants, preprint, Florida State University.
- Takeshi Yajima, On simply knotted spheres in $R^{4}$, Osaka Math. J. 1 (1964), 133–152. MR 172280
- Takaaki Yanagawa, On ribbon $2$-knots. The $3$-manifold bounded by the $2$-knots, Osaka Math. J. 6 (1969), 447–464. MR 266193
- E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471–495. MR 195085, DOI 10.1090/S0002-9947-1965-0195085-8
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 291-297
- MSC: Primary 57Q45
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542100-0
- MathSciNet review: 542100