Pseudolattice properties of the star-orthogonal partial ordering for star-regular rings
HTML articles powered by AMS MathViewer
- by Robert E. Hartwig
- Proc. Amer. Math. Soc. 77 (1979), 299-303
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545584-7
- PDF | Request permission
Abstract:
It is shown that a star-regular ring R forms a pseudo upper semilattice under the star-orthogonal partial ordering. That is, for every a, b in R, the set $\{ c|c \geqslant a,c \geqslant b\}$ is nonempty if and only if $a \vee b$ exists in R, in which case \[ a \vee b = a + (1 - a{a^\dagger })b{b^ \ast }{[(1 - {a^\dagger }a){b^ \ast }]^\dagger }.\]References
- K. Berberian, Baer star-rings, Springer-Verlag, Berlin-New York, 1972.
M. P. Drazin, The Moore-Penrose inverse in abstract operator rings, Notices Amer. Math. Soc. 23 (1976), A-664. Abstract #740-B20.
- Michael P. Drazin, Natural structures on semigroups with involution, Bull. Amer. Math. Soc. 84 (1978), no. 1, 139–141. MR 486234, DOI 10.1090/S0002-9904-1978-14442-5
- M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506–514. MR 98762, DOI 10.2307/2308576
- Robert E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal. 61 (1976), no. 3, 197–251. MR 399124, DOI 10.1007/BF00281485 R. E. Hartwig and M. P. Drazin, Lattice properties of the star-order for complex matrices (submitted).
- Magnus R. Hestenes, Relative hermitian matrices, Pacific J. Math. 11 (1961), 225–245. MR 137723, DOI 10.2140/pjm.1961.11.225
- N. S. Urquhart, Computation of generalized inverse matrices which satisfy specified conditions, SIAM Rev. 10 (1968), 216–218. MR 227186, DOI 10.1137/1010035
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 299-303
- MSC: Primary 06F25; Secondary 15A24
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545584-7
- MathSciNet review: 545584