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PSEUDO LATTICE PROPERTIES OF THE

STAR-ORTHOGONAL PARTIAL ORDERING

FOR STAR-REGULAR RINGS

ROBERT E. HARTWIG

Abstract. It is shown that a star-regular ring R forms a pseudo upper

semilattice under the star-orthogonal partial ordering. That is, for every a, b

in R, the set {c|c > a, c > b) is nonempty if and only if a V b exists in R,

in which case

a\/b = a + (l- aa1)bb*[(\ - a*a)b*]\

1. Introduction. In two recent papers ([2], [3]), Drazin introduced the

star-orthogonal partial ordering

a < b<¿>a*a = a*b   and   aa* = ba* (1)

for proper-star-semigroups (S, *), for which the involution (•)*: S -* S satis-

fies, in addition to the usual two conditions (i) (a*)* = a, (ii) (ab)* = b*a*,

the "proper" condition (iii) a*a = a*b = b*a = b*b => a = b. For a ring R,

the condition (iv) (a 4- b)* = a* + b* is added, and (iii) is easily seen to be

equivalent to the traditional star cancellation law

a*a = 0=>a = 0. (2)

It was subsequently shown by Hartwig and Drazin [6] that the algebra CnX„

of « X « complex matrices forms a lower semilattice under the partial

ordering (1), which means that a /\b = sup{c|c < a, c < b) exists in CnXn

for all a, b in CnXn. Because invertible elements are obviously maximal

elements under <, the join a\j b = inf{c|c > a, c > b) will in general not

exist, because the set {c|c > a,c > b) may be empty.

The purpose of this note is to prove that if A is a star-regular ring, then R

forms a pseudo upper semilattice, that is a V b will exist precisely when

(c|c>a, c>o}is nonempty. An element a G S is called regular ii a G aSa,

and »-regular if aa* and a*a are both regular. It is well known, from [8], that

a E Sis star-regular exactly when there is a, necessarily unique, solution to

the equations:

axa = a,       xax = x,       (ax)* = ax,       (xa)* = xa.

This solution a* is known as the Moore-Penrose inverse of a. A ring is called

(star) regular when every element a G R is (star) regular. It should be noted

that R is »-regular precisely when R is regular and the involution is proper.
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2. Main results. We shall now prove our main local result, from which the

global result for star-regular rings obviously follows.

Theorem 1. Let R be a ring with involution (•)*, and let a, b be elements of

R such that a, b, (1 — aa*)b, and b(l — a*a) are star-regular. Then [c\c > a,

c > b) is nonempty if and only if

(i)   b(b* - a*)a = 0 = a(b* - a*)b,

(ii)   b(b* - a*) E b(l - a*a)R,

(iii)    (b* - a*)b E R(l - aa^b. (3)

In which case ay b exists and is given by

ayb = a + (l- aa*)bb*[(l - a*a)b*]\ (4)

Proof. Suppose that c > a, c > b for some c E R, that is

a*(a - c) = (a- c)a* = b*(b - c) = (b - c)b* = 0. (5a)

Since a and b are »-regular, a? and tf exist and hence (5a) may be rewritten

as in [3]:

aa^c = a = ca^a,       bb^c = b = cc%. (5b)

Thus

a% = a^ctfb = a\aaWb) = a*ab%       tfa = ¿>Wa. (6)

Symmetry now yields two more such results. From (6), a*b = a*ab%, which

shows that b%a*a = b*a and hence that ba*a = bb*a. By symmetry aa*b =

ab*b, so that (3i) follows. Next, let u = (1 — aaX)b and v = b(l — a^a), and

consider b*c = b*b. Post multiplication by (1 — a*a) yields

b*b(l - alo) = ¿>*c(l - a^a) = b*(l - aa^c,

that is

u*c = b*v. (7)

Similarly (1 - aa^cb* = c(l - a*a)b* = (1 - aa^bb* yields

cv* = ub*. (8)

The assumed consistency of (7) and (8) ensures that u*u*%*v = b*v and

ub*v*^v* — ub*, while the elimination of c gives

u*ub = u*cv* = b*w*. (9)

Now

u^ub*v = b*v<=> v*b = v*bu!u «=*• v*b Ë&« u+¿> = v'bu^u,    (10a)

where

u*è = (1 - a^a)b*b = b*b - a^ab*b = b*b - a*bb% = (b* - a*)b,

from which (3iii) follows.

Similarly

ub*w* = ub* <=> üütyt/* = bu* <=> eu* EcÄ» uu^m* = bu1,    (10b)
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where bu* = bb*(l — aa1) = bb* — ba*. This completes the proof of the

necessity of (3).

Suppose now that (3i), (3ii) and (3iii) hold. We shall first demonstrate that

[r\r > a, r > b] is nonempty.

First observe that a particular solution to the equations (7) and (8) alone is

given by u**b*v. To obtain a solution to r > a, r > b, all we have to do is add

element a tow = u*1b*v.

Indeed, since a*u = 0 = u*a = va1 = av*, we have a1w = wa1 = 0, and

aa*(a + w) = a = (a 4- w)a1a   or   a < a + w.

Next, consider bb1(a + w) = ba^a 4- bb^u*^b*v, where we used (3i), and

recall that always:

u*u = u*b = b*u,    w* = vb* = bv*,    ub% = u,

u'u = u%, w1 = bv1, bb^v = v, (LI)

u = uu%, v = bv^v.

Hence, bb^u*%*v = (u%b^)*b*v which by (11) becomes (i/W)*6*o =

b*\u*ub*v). Using (10a) this reduces to b*%*v = btfv, and hence by (11)

equals v = b — ba1a. Substituting this in the above we see that bb1(a + w) =

I}. Similarly, with aid of (10b), (3i) and (11), (a 4- w)b% = aa% 4- «*+o*uot6

= aa% + u = b, and thus a < a 4- w, b < a + w, as desired. In conclusion

let us prove that a 4- w is in fact equal to a V b. In order to do this, let us

first verify that wT exists and that

(a + w)f = fl+ 4- w\ (12)

The details are essential since we shall also need the expressions for

(a + w)(a 4- w)1 and (a 4- w)T(a 4- w). Again, since a*w = 0 = wa*, it

follows by a result of Hestenes [7] that (12) holds and that in addition:

(a + w)(a + wy* = aa1 4- ww1,    (a 4- w)'(a + w) = a^a 4- wV,  (13)

provided w1 exists. Let us now verify that x = v%*^u* = vvT.

Indeed, wx = M*Tft*ouT6*tK* = (vv^bu1)* b*^u*, which by (10b) becomes

(ot/+)*6*tM* = u*%*b*u* = u*Wbu* = [(ub1b)u1]*.

But utfb = m, and hence we arrive at wx = (uu1)* = uu1.

Similarly xw = v%*^u*u*%*v = t/fa'Vuo*!;, which by (10a) reduces to

v^b'^v = v^btfv = t)+ü,   since bb^v = v.

Hence, wxw = uu^w = w and xvvx = v*v(v*b**u*) = x, as desired. Conse-

quently, we may conclude that

(a 4- w)(a 4- w)1 = aa1 4- uu1, (a 4- w) (a + w) = a^a + v%.

Finally let c > a, c > b, so that (5) holds. Then (a + w)(a 4- wy*c = (aa1

4- uu*)c = a + uu'c = a + w, since uu*c = w*tw*c = u*^b*v. Similarly c(a

+ wf*(a + w) = c(a1a + v^v) = a + cv*v in which cv^v = cv*v**. Using (8)

this  equals  ub*v*1 = u*1(u*ub*)v*^ and hence  yields,  with  aid  of (9),
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u**(b*w*)v** = u*%*v = x. Thus a + w < c and consequently a V b = a

+ u*fb*v = a + ub*v*f.

3. Remarks and conclusions. Let us conclude this note with several remarks

and conclusions.

(i) For projections (or Hermitian idempotents), e and /, the conditions (3)

automatically hold because obviously e(f — e)f = 0 = /(/ — e)e, fif — e) =

fil - e), and (/ - e)f = (1 - e)f. Thus

eVf=e + (l- e)f[(l - e)tf = e + (I - e)[(l - e)f]\

which is well known [1], [6].

(ii) When a and b star-commute, that is when a*b and ba* are Hermitian,

then (3ii) and (3iii) hold automatically. To prove this we begin by observing

that aa* and bb* commute. Since (aa*y is the group inverse of aa*, it follows

by a result of Drazin [4, p. 208], that (aa*y* and bb* also commute. Next, we

note that

a%b* = a*(aa*?bb* = a*bb*(aa*y = b*ba*(aa*y = b*ba\

Lastly, we need the fact that (¿>*a)+ = atè*t and (a*bf = 6ta*t, which may

be verified directly or by using the reverse order law [5, p. 231]. Combining

these see that a% = (a%b*)b* = b*ba*b*f = b*b(b*ay* = b*b(a*by* =

6*¿>6ta*t «■ b*a*f, that is, a% is also Hermitian. Hence aa^b = a^a** =

ba*a*i = bata, which implies that u = v. Thus, with aid of (11) v*b = u*b

= u*u E Ru while bu* = bv* = w* E vR. This means that

a V b exists <=> b(b* - a*)a = 0 = a(b* - a*)b. (14)

In which case

a V b = a + u*%*v = a + «»Vu = a + (1 - aa+)¿>.

(iii) If a and Z> are partial isometries, such that a* = a* and 6* = ¿>+, or

equivalently aa*a = a, bb*b = b, then (14) also holds! The proof, however, is

more delicate. First note that with aid of (3i) u*ub* = b*w*. This allows us

to conclude that bu* and vb* are both star-regular. Indeed,

(bu*)(bu*)* = bu*ub* = bb*w* = bb*b(l - a*a)v* = w*,

and

(bu*)*(bu*) = ub*bu* = (1 - aa^)bb*bu* = mm*.

Similarly,

(ü*¿>)(ü*¿>)* = ü*6e*t; = v*bb*b(l - a^a) = v*v

and

(v*b)*(v*b) = b*w*b = u*ub*b = u*u,

all of which are regular by assumption. Hence

bu* = (bu*)(bu*)*(bu*)** = w*(bu*)** E vR
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and

v*b - (v*b)*\v*b)*(v*b) = (v*b)**u*u E Ru

as desired,

(iv) Using (1-21) of [5] we may rewrite (4) as

ayb = a + (l- aa*)bb*[(l - a*a)b*]\l - a'a),

however no (a-è)-symmetric formula is known at the present.

(v) Since uu^c = u*%*v for all c > a, b, we have the following identity in

ayb — a, a\Jb — a = uu*(a V b — a)v^v.

(vi) It is not known whether a V b exists in a general star-regular ring,

however it is anticipated that u and v will play a dominant role in its

investigation.
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