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PSEUDO LATTICE PROPERTIES OF THE
STAR-ORTHOGONAL PARTIAL ORDERING
FOR STAR-REGULAR RINGS

ROBERT E. HARTWIG

ABSTRACT. It is shown that a star-regular ring R forms a pseudo upper
semilattice under the star-orthogonal partial ordering. That is, for every a, b
in R, the set {c|c > a, ¢ > b} is nonempty if and only if a \/ b exists in R,
in which case

aV b=a+ (1 - aa")bb*((1 - a'a)b*]".

1. Introduction. In two recent papers ([2], [3]), Drazin introduced the

star-orthogonal partial ordering

a<bea*a=a*h and aa* = ba* (1)
for proper-star-semigroups (S, *), for which the involution (-)*: S — § satis-
fies, in addition to the usual two conditions (i) (a*)* = a, (ii) (ab)* = b*a*,
the “proper” condition (iii) a*a = a*b = b*a = b*b = a = b. For aring R,
the condition (iv) (@ + b)* = a* + b* is added, and (iii) is easily seen to be
equivalent to the traditional star cancellation law

a*a=0=a=0. )

It was subsequently shown by Hartwig and Drazin [6] that the algebra C,,,
of n X n complex matrices forms a Jlower semilattice under the partial
ordering (1), which means that a A b = sup{c|c < @, ¢ < b} exists in C,,
for all a,b in C,,,. Because invertible elements are obviously maximal
elements under <, the join a \/ b = inf{c|c > a, ¢ > b} will in general not
exist, because the set {c|c > a, ¢ > b} may be empty.

The purpose of this note is to prove that if R is a star-regular ring, then R
forms a pseudo upper semilattice, that is a\/ b will exist precisely when
{c|c > a, ¢ > b} is nonempty. An element a € S is called regular if a € aSa,
and =-regular if aa* and a*a are both regular. It is well known, from [8], that
a € § is star-regular exactly when there is a, necessarily unique, solution to
the equations:

axa=a, xax=x, (ax)*=ax, (xa)* = xa.
This solution a' is known as the Moore-Penrose inverse of a. A ring is called

(star) regular when every element a € R is (star) regular. It should be noted
that R is »-regular precisely when R is regular and the involution is proper.

Received by the editors February 15, 1978 and, in revised form, November 21, 1978.

AMS (MOS) subject classifications (1970). Primary 06A10, 06A20; Secondary 15A28, 15A30.
© 1979 American Mathematical Society
0002-9939/79 /0000-0550/$02.25

299



300 R. E. HARTWIG

2. Main results. We shall now prove our main local result, from which the
global result for star-regular rings obviously follows.

THEOREM 1. Let R be a ring with involution (-)*, and let a, b be elements of
R such that a, b, (1 — aa®)b, and b(1 — a'a) are star-regular. Then {c|c > a,
¢ > b} is nonempty if and only if

(i) b(b* — a*)a =0 = a(b* — a*)b,
(i) b(b* — a*) € b(1 — a'a)R,

(iii) (b* — a*)b € R(1 — aa™)b. 3)
In which case a \/ b exists and is given by
. aVVb=a+ (1 - aa*)bb"[(l - a*a)b‘]f. 4)
PROOF. Suppose that ¢ > a, ¢ > b for some ¢ € R, that is
a*(a—c)=(a—c)a*=b*b—c)=(b—c)b*=0. (5a)

Since a and b are +-regular, a’ and b' exist and hence (5a) may be rewritten
asin [3]:
aa'c = a = cala,  bblc = b = cc'b. (5b)
Thus
a'b = a'cb’d = a'(aa'ch’d) = a'ab’b,  bla = biba'a. (6)

Symmetry now yields two more such results. From (6), a*b = a*ab'h, which
shows that b'ha*a = b*a and hence that ba*a = bb*a. By symmetry aa*b =
ab*b, so that (3i) follows. Next, let u = (1 — aa®)b and v = b(1 — a'a), and
consider b*c = b*b. Post multiplication by (1 — a'a) yields

b*b(1 — a'a) = b*c(1 — a'a) = b*(1 — aa’)c,

that is
u*c = b*v. ™
Similarly (1 — aa®)chb* = c¢(1 — a'a)b* = (1 — aa’)bb* yields
co* = ub*. 8)

The assumed consistency of (7) and (8) ensures that u*u*'b*v = b*v and
ub*v*'o* = ub*, while the elimination of ¢ gives

u*ub = u*co* = b*vo*. ©)
Now
ulub*v = b*v & v*b = v*bulu o v*b € Rue v'b = o'buly, (10a)
where
v*b = (1 — a'a)b*b = b*b — a’ab*b = b*b — a*bb'p = (b* — a*)b,
from which (3iii) follows.
Similarly
ub*vo’ = ub* & vo'bu* = bu* < bu* € vR & vo'bu' = bu', (10b)
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where bu* = bb*(1 — aa'’) = bb* — ba*. This completes the proof of the
necessity of (3).

Suppose now that (3i), (3ii) and (3iii) hold. We shall first demonstrate that
{rlr > a, r > b} is nonempty.

First observe that a particular solution to the equations (7) and (8) alone is
given by u*'b*v. To obtain a solution to r > a, r > b, all we have to do is add
element a to w = u*'b*v.

Indeed, since a'u = 0 = ula = va® = av', we have a'w = wa' = 0, and

aat(a+ w)=a=(a+w)a'a or a<a+ w.

Next, consider bb'(a + w) = ba'a + bb'u*'b*v, where we used (3i), and
recall that always:

u*u = u*b = b*u, vv* = vb* = bo*, ub'b =u,

utu = u'b, oot = bof, bb' = v, (1)

u = uu'b, v = bo'v.
Hence, bb'u*b*v = (u'bbh)*b*v which by (11) becomes (ufub®)*b*v =
b**(u'ub*v). Using (10a) this reduces to b*'b*v = bb'v, and hence by (11)
equals v = b — ba'a. Substituting this in the above we see that bbT(a + w) =
b. Similarly, with aid of (10b), (3i) and (11), (a + w)b'b = aa'd + u*b*vb™
=aa'db+ u= b, and thusa < a + w, b < a + w, as desired. In conclusion
let us prove that a + w is in fact equal to @ \/ b. In order to do this, let us
first verify that w' exists and that

(a +w)' =at +wh (12)
The details are essential since we shall also need the expressions for
(a + wY(a + w)' and (a + w)(a + w). Again, since a*w =0 = wa*, it
follows by a result of Hestenes [7] that (12) holds and that in addition:
(a + w)(a + w)' = aa' + ww!, (a+ w)l(a + w) = ala + wiw, (13)
provided w! exists. Let us now verify that x = o'b*iu* = w'.
Indeed, wx = u*b*vo’b*u* = (vo'bu’)*b*1u*, which by (10b) becomes
(buT)‘b*Tu"‘ = u#‘l’b*b*fu* = uwb'rbut = [(ubfb)uf]*.
But ub'™ = u, and hence we arrive at wx = (uuh* = uu’.
Similarly xw = o*u*u*b*v = v'b*uub*v, which by (10a) reduces to
o’b*b*v = vbbto = v'v, since bblv = v.
Hence, wxw = uu'w = w and xwx = o'o(vb*u*) = x, as desired. Conse-
quently, we may conclude that
(a + w)(a + w) = aa’ + uut, (a + w)'(a + w) = a’a + v'o.
Finally let ¢ > a, ¢ > b, so that (5) holds. Then (a + w)(a + w)lc = (aat
+ uu®yc = a + uu'c = a + w, since uu'c = u*'u*c = u**v. Similarly c(a
+ w)f(a + w) = c(a'a + v') = a + co'v in which cv’v = cv*v*'. Using (8)
this equals ub*v*' = u*'(u*ub*)o*' and hence yields, with aid of (9),
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u*t(b*vv*)v*" = u*’b*v = x. Thus a + w < ¢ and consequently a\/ b = a
+ u*'b*v = a + ub*ov*'.

3. Remarks and conclusions. Let us conclude this note with several remarks
and conclusions.

(i) For projections (or Hermitian idempotents), e and f, the conditions (3)
automatically hold because obviously e(f — e)f = 0 = f(f — e)e, (f — e) =
f(1 — e),and (f — e)f = (1 — e)f. Thus

eVfi=e+(1-ef[(1-e)f]' =e+(1-[(1-e)],
which is well known [1], [6].

(ii) When a and b star-commute, that is when a*b and ba* are Hermitian,
then (3ii) and (3iii) hold automatically. To prove this we begin by observing
that aa* and bb* commute. Since (aa*)' is the group inverse of aa*, it follows
by a result of Drazin [4, p. 208}, that (aa*)' and bb* also commute. Next, we
note that

a'bb* = a*(aa*)'bb* = a*bb*(aa*)' = b*ba*(aa*)' = b*ba'.

Lastly, we need the fact that (b*a)' = a'b*' and (a*b)! = b'a*', which may
be verified directly or by using the reverse order law [5, p. 231]. Combining
these see that a'b = (a'bb*)b*' = b*ba's*' = b*b(b*a)’ = b*b(a*b)! =
b*bbla*t = b*a*, that is, a'b is also Hermitian. Hence aa' = ab*a*! =
ba*a*!t = ba'a, which implies that ¥ = v. Thus, with aid of (11) v*b = u*b
= y*u € Ru while bu* = bv* = vo* € vR. This means that

a \/ b exists © b(b* — a*)a = 0 = a(b* — a*)b. (14)
In which case
aVb=a+ub*o=a+ u*u*u=a+ (1 — aa®)b.

(iii) If a and b are partial isometries, such that a* = a' and b* = b, or
equivalently aa*a = a, bb*b = b, then (14) also holds! The proof, however, is
more delicate. First note that with aid of (3i) u*ub* = b*vv*. This allows us
to conclude that bu* and vb* are both star-regular. Indeed,

(bu*)(bu*)* = bu*ub* = bb*vv* = bb*b(1 — a'a)v* = vv*,

and

(bu*)*(bu*) = ub*bu* = (1 — aat)bb*bu* = uu*.
Similarly,

(v*b)(v*b)* = v*bb*v = v*bb*b(1 — a'a) = v*v
and

(v*b)*(v*b) = b*vv*b = u*ub*b = u*u,
all of which are regular by assumption. Hence
bu* = (bu*)(bu*)*(bu*)*t = vo*(bu*)*' € vR
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and
v*b = (v*b)*'(v*b)*(v*b) = (v*b)*'u*u € Ru

as desired.

(iv) Using (1-21) of [5] we may rewrite (4) as

aVb=a+(1- aat)bb*[(1 - afa)b‘]"(l - a'a),

however no (a-b)-symmetric formula is known at the present.

(v) Since uu'c = u*'b*v for all ¢ > a, b, we have the following identity in
aVVb—a,a\/b—a=uul(a\b - ayw'.

(vi) It is not known whether a \/ b exists in a general star-regular ring,

however it is anticipated that ¥ and v will play a dominant role in its
investigation.
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