Sign compatible expressions for minors of the matrix $I-A$
HTML articles powered by AMS MathViewer
- by D. J. Hartfiel
- Proc. Amer. Math. Soc. 77 (1979), 304-308
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545585-9
- PDF | Request permission
Abstract:
Let $A = ({a_{ij}})$ be an $n \times n$ nonnegative matrix having row sums less than or equal to one. This paper shows that the ijth minor of $I - A$ can be expressed as \[ {( - 1)^{i + j}}\sum {\Pi {r_k}{a_{pq}}} \] where \[ {r_k} = 1 - \sum \limits _{s = 1}^n {{a_{ks}}} \] and each $\Pi {r_k}{a_{pq}}$ is a product of exactly $n - 1$ numbers taken from ${r_k},{a_{pq}}$ for $k,p,q = 1, \ldots ,n$. This theorem is then used to obtain perturbation results concerning the matrix $I - A$.References
- F. R. Gantmacher, The theory of matrices. Vol. 2, Chelsea, New York, 1960.
- Sailes Kumar Sengupta, Comparison of eigenvectors of irreducible stochastic matrices, Linear Algebra Appl. 12 (1975), no. 2, 101–110. MR 382313, DOI 10.1016/0024-3795(75)90059-2
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 304-308
- MSC: Primary 15A48; Secondary 15A45
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545585-9
- MathSciNet review: 545585