An octic reciprocity law of Scholz type
HTML articles powered by AMS MathViewer
- by Duncan A. Buell and Kenneth S. Williams
- Proc. Amer. Math. Soc. 77 (1979), 315-318
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545588-4
- PDF | Request permission
Abstract:
The authors [3] have conjectured that if p and q are distinct primes satisfying \[ p \equiv q \equiv 1\quad \pmod 8,\quad {(p/q)_4} = {(q/p)_4} = + 1,\] then \[ {\left ( {\frac {p}{q}} \right )_8}{\left ( {\frac {q}{p}} \right )_8} = \left \{ {\begin {array}{*{20}{c}} {{{\left ( {\frac {{{\varepsilon _p}}}{q}} \right )}_4}{{\left ( {\frac {{{\varepsilon _q}}}{p}} \right )}_4},\quad {\text {if}}\;N({\varepsilon _{pq}}) = - 1,} \hfill \\ {{{( - 1)}^{h(pq)/4}}{{\left ( {\frac {{{\varepsilon _p}}}{q}} \right )}_4}{{\left ( {\frac {{{\varepsilon _q}}}{p}} \right )}_4},\quad {\text {if}}\;N({\varepsilon _{pq}}) = + 1,} \hfill \\ \end {array} } \right .\] where ${\varepsilon _p}$ is the fundamental unit of $Q(\sqrt p ),N({\varepsilon _{pq}})$ denotes the norm of the unit ${\varepsilon _{pq}}$, and $h(pq)$ is the class number of $Q(\sqrt {pq} )$. A proof of this conjecture is given, which makes use of results of Bucher [2].References
- Ezra Brown, Class numbers of quadratic fields, Symposia Mathematica, Vol. XV, Academic Press, London, 1975, pp. 403–411. Convegno di Strutture in Corpi Algebrici, INDAM, Rome, 1973,. MR 0382226
- J. Bucher, Neues über die Pell’sche Gleichung, Mitt. Naturforsch. Ges. Luzern 14 (1943), 1–18 (German). MR 21551
- Duncan A. Buell and Kenneth S. Williams, An octic reciprocity law of Scholz type, Proc. Amer. Math. Soc. 77 (1979), no. 3, 315–318. MR 545588, DOI 10.1090/S0002-9939-1979-0545588-4
- Dennis R. Estes and Gordon Pall, Spinor genera of binary quadratic forms, J. Number Theory 5 (1973), 421–432. MR 332653, DOI 10.1016/0022-314X(73)90012-7
- Emma Lehmer, On the quadratic character of some quadratic surds, J. Reine Angew. Math. 250 (1971), 42–48. MR 286777, DOI 10.1515/crll.1971.250.42
- Emma Lehmer, Rational reciprocity laws, Amer. Math. Monthly 85 (1978), no. 6, 467–472. MR 498352, DOI 10.2307/2320065 Arnold Scholz, Über die Lösbarkeit der Gleichung ${t^2} - D{u^2} = - 4$, Math. Z. 39 (1934), 95-111.
- Kenneth S. Williams, On Scholz’s reciprocity law, Proc. Amer. Math. Soc. 64 (1977), no. 1, 45–46. MR 453618, DOI 10.1090/S0002-9939-1977-0453618-1
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 315-318
- MSC: Primary 10A15; Secondary 12A45
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545588-4
- MathSciNet review: 545588