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SOME DECIDABLE DIOPHANTINE PROBLEMS:

POSITIVE SOLUTION TO A PROBLEM OF

DAVIS, MATIJASEVIC AND ROBINSON1

MOSHE KOPPEL

Abstract. An algorithm is given for determining whether or not a finite

system of conditions of the types a\B, a < B, a is a square, possess a

simultaneous solution in positive integers. Various generalizations are also

obtained.

In 1970, Matijasevic proved that there is no algorithm to determine if a

general polynomial Diophantine equation has a solution in positive integers

(see, for example, Davis, Matijasevic and Robinson [1]). A particularly neat

formulation of this theorem can be obtained from the observation made by

Skolem [6] that any Diophantine equation can be reduced to a system of

conditions of types a + ß = y, a- ß = y. The theorem then reads: There is

no algorithm to determine whether a system of conditions of types: a 4- ß =

y, a ■ ß = y has a solution in positive integers.

There are other relations such that certain systems of conditions using

those relations are equivalent to a + ß = y and a ■ ß = y. For example,

consider the relations a + I = ß, a- ß = y. Th§n, x 4- y = z is equivalent to

the system x + 1 = ax, z 4- 1 = a2, a, • a2 = a3, a3 + 1 = a4, a2 ■ y = a5,

«5 + 1 = «6- «6 - «4 = «7. «i7 = ö8, a8+l = a9, a9-a2 = a10, a10 • a2 =

a,„ a,, 4- 1 = a7. (This is simply an expansion of s(sx ■ sz) ■ s(y • sz) = s(sz ■

sz • s(sx • y)) where sa = a + 1.) Consequently, there is no algorithm to

determine if a system of conditions of types: a + 1 = J3, a- ß = y has a

solution in positive integers.

Similar methods have been used to extend the theorem to various classes of

relations (see, for example, Robinson [4] and Schwartz [5]). In particular,

Kosovskii [3] showed that there is no algorithm to determine if a system of

conditions of types: a + ß = y, a\ß, a = □ has a solution in positive

integers, (a = □ means that a is a perfect square.)

This result motivated the problem posed by Davis, Matijasevic and Robin-

son [1]:

(*) Does there exist an algorithm to determine if a sequence of formulas of

types: a < ß,a\ß,a = □ has a solution in positive integers?
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This paper includes a general theorem concerning binary relations which

has as a corollary an affirmative solution to (*).

In this paper a, ß are either variables or positive integers and N is the set of

positive integers, a R ß means "a is related to ß in relation R",

R(a)={ß\aRß],    R(S) =   IJ *(«)•
OES

Below, contexts will be encountered in which specific variables have their

range restricted by stipulations already made. In such contexts, <a> repre-

sents the set of possible values of the variable a.

Definition. The family of computable functions {g(l): I E N) is called a

generalized common multiple in the relation R if for any ax, . . . , a,,

i

g<' »(«„..., a,)E  D *(«,)•
/-I

Consider   computable   relations   /?,,..., Rm   and   computable   sets

S„ . . . , Sn. Let
m m n

rv= u *„   */ = n r»   s, = n slt
«-i /=i i-i

P,(a) = Rf(a) n Sr Then we have:

Main Theorem. // (i) for all i = 1, . . . , m, a R¡ ß=> a <f(ß) for some

strictly increasing computable function f,

(ii) there is a family {g(/): I E N) which is a generalized common multiple in

the relation P,.

For all i = 1, 2, . . . , m there exists cQ such that

(iii) either for all a > c0 a R¡ a, in which case R, is called c0-reflexive, or for

all a > c0 — a R¡ a in which case R¡ is called c0-antireflexive, and

(iv)for all a > c0, R^R^a) - {a}) E Rv(a) - {a},

then there exists an algorithm to determine whether or not a given system of

conditions of the types a R,, ß, a E S¡, has a solution in positive integers.

Let P be some given system consisting of p0 conditions. The proof of the

Main Theorem will use the following definitions, of which the second is

inductive.

Definition. Lp is the set of (numbers or variables) a such that P contains a

sequence of conditions of the form:

a Rl¡ a„    a, R¡2 a2,     ■ ■ ■ ,    aw_x \ a (I)

where some R¡ is cn-antireflexive.

Definition.

BP = {c E N: (a R c) E P } u {a: (a R ß) E P A ß E (LP u BP)}.

Thus, LPE BP.

Let cx = maxceBpc, c2 = /<2po)(c0) + /(Po)(c,) where / and c0 are from the
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statement of the theorem, and fiPo> is the function obtained by p0 iterations of

/:

Definition.  P = {a R ß:   (a R ß) G P /\ a, ß G BP] u {a G S¡:   (a G

S,) G P A a G BP).

The proof of the Main Theorem follows from the following.

Lemma. F has a solution in positive integers if and only if P has a solution in

positive integers < c2.

Proof. Suppose P has a solution. Let a G LP. Then there is the sequence

of conditions (1) where R¡ is c0-antireflexive. Now, suppose that P had a

solution in which ol_ , had a value x > c0. Then x £ (a,). Therefore, (a,) G

Ru(x) - {x}, and

xeF^-')««/»ÇFu(x)-{x},

using (1) and (iv). This contradiction shows that for any solution, otf_l < c0

and a, < /^(co) for i = 1,2, ... ,w. Hence any solution of F is such that all

variables in LP have values < f^Po\c0).

Next let a G BP. Then F contains a sequence of the form

a Rio ax,    a, Rf) a2,     . . . ,    a„ R^ ß

where w <p0 and ß is either a constant < c, or a variable in L^ and hence

with value < f(Pa\c^) in any solution. Then, in any solution of P,

a <f"Xmax(cx,f^(c0)))

= max(f^(cx),f^+>">\c0)) <c2.

Since all variables in BP have values < c2 in any solution of F, P has such a

solution.

Conversely, suppose P has such a solution. Then any "loop" of the form (1)

in which no /?, is c0-antireflexive can be satisfied by

a = a, = a2 = • • •  = a„ > c0.

Consequently all such "loops" in F can be eliminated by replacing each

occurrence of a¡ (i = 1,2, ... ,w) by a. (But the value to be assigned a must

be > c0.)

For the purpose of this proof a is called a parent of ß if the condition

a R¿ ß is in F for some /', and the generation of a, for a £ BP, is the largest w

such that P contains a sequence

«1 Rit «2'     «2 Ri2 «3>      • • • >     «w Äc «

where a2 £ Fy. Since P has a solution we can assign values to all a G Bp.

Also assign all parentless a's the value s0 where s0 = minis'/). At this point

any variable of the first generation, say a, has parents which are either

constants or have already been assigned values. Suppose these parents have

values ax, . . . , a,. Then fix the value of a as g(/+1)(a,, . . ., a,,f(c0)). (f(c0) is

included as an argument in order to guarantee, by (i) that variables arising
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from collapsed "loops" are given values > c0.) In this way the whole first

generation is assigned values. Now any variable of the second generation has

parents with definite values. Continue this process until all variables have

been assigned values. These values constitute a solution of P in positive

integers.

Using the same notation as above and sacrificing some generality a much

simpler statement of the Main Theorem can be obtained.

Corollary. // (i) there is a family (g(/): I E N) which is a generalized

common multiple in the relation P¡,

(ii) R¡ is reflexive or antireflexive, and

(iii) o R¡ ß implies a < ß,

then there is an algorithm to determine whether or not a system of conditions of

types a R¡ ß, a E S¡, has a solution in positive integers.

There are two interesting applications of this corollary.

The first gives a positive solution to the problem posed in [1].

Corollary. There is an algorithm to determine whether or not a system of

conditions of types a < ß, a\ ß, a = n has a solution in positive integers.

The second finds a fine boundary line between decidable and undecidable

problems.

Theorem. There is an algorithm to determine whether or not a system of

conditions of type f(ß) < a, where the f are any recursive, strictly increasing

functions, has a solution in positive integers. However for general nondecreasing

functions f¡ there is no such algorithm.

Proof. The first assertion is an immediate consequence of the first

corollary above where the R¡ of the corollary are f(ß) < a. To prove the

second assertion, suppose there were such an algorithm. Then in particular

there is an algorithm to determine whether or not there is a solution in

positive integers to the system:

fx(ß ) - l< a,   fx-x(a) -Kß,       f2(y) - 1< a,   f2x(a) - 1< y

where f~x(a) = minx(/(x) > a). (If the minimum does not exist let f¡'x(a) be

"infinite".) This sequence of formulas is equivalent to fx(ß) = a = f2(y).

Consequently, if there were an algorithm to determine whether or not this

system has a solution then there would be an algorithm to determine whether

or not Range(/,) n Range(/2) = 0. But since every computable set-and, in

particular, every context-free set-is expressible as Range(/) for some increas-

ing computable function /, we would then have an algorithm to determine

whether L(TX) n L(r2) = 0 where T, and T2 are context-free grammars and

where L(T) is the language accepted by T. No such algorithm exists (cf., e.g.,

[2, p. 583]).
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