A uniqueness theorem for a boundary value problem
HTML articles powered by AMS MathViewer
- by Riaz A. Usmani
- Proc. Amer. Math. Soc. 77 (1979), 329-335
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545591-4
- PDF | Request permission
Abstract:
In this paper it is proved that the two-point boundary value problem, namely $({d^{(4)}}/d{x^4} + f)y = g,y(0) - {A_1} = y(1) - {A_2} = y''(0) - {B_1} = y''(1) - {B_2} = 0$, has a unique solution provided ${\inf _x}f(x) = - \eta > - {\pi ^4}$. The given boundary value problem is discretized by a finite difference scheme. This numerical approximation is proved to be a second order convergent process by establishing an error bound using the ${L_2}$-norm of a vector.References
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395
- Eugene Isaacson and Herbert Bishop Keller, Analysis of numerical methods, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0201039
- M.-K. Jain, S. R. K. Iyengar, and J. S. V. Saldanha, Numerical solution of a fourth-order ordinary differential equation, J. Engrg. Math. 11 (1977), no. 4, 373–380. MR 451735, DOI 10.1007/BF01537095
- Milton Lees, Discrete methods for nonlinear two-point boundary value problems, Numerical Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965) Academic Press, New York, 1966, pp. 59–72. MR 0202323 E. L. Reiss, A. J. Callegari and D. S. Ahluwalia, Ordinary differential equations with applications, Holt, Rinehart and Winston, New York, 1976. S. Timoshenko and S. Woinowsky-Krieger, Theory of plates and shells, McGraw-Hill, New York, 1959.
- R. A. Usmani and M. J. Marsden, Numerical solution of some ordinary differential equations occurring in plate deflection theory, J. Engrg. Math. 9 (1975), 1–10. MR 428723, DOI 10.1007/BF01535492
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 329-335
- MSC: Primary 34B05; Secondary 65L10
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545591-4
- MathSciNet review: 545591