Generic properties of contraction semigroups and fixed points on nonexpansive operators
HTML articles powered by AMS MathViewer
- by F. S. De Blasi and J. Myjak
- Proc. Amer. Math. Soc. 77 (1979), 341-347
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545593-8
- PDF | Request permission
Abstract:
Let $\Omega$ be a nonempty, closed, bounded and starshaped subset of a Banach space X. It is shown that most (in the Baire category sense) differential equations $u’ + Au = 0$ do have a unique asymptotic equilibrium point. Here $A:\Omega \to X$ is supposed to be a nonlinear, continuous, bounded and accretive operator satisfying the Nagumo boundary condition. An application to the fixed point theory of nonexpansive operators $F:\Omega \to X$ satisfying $F(\partial \Omega ) \subset \Omega$ is given.References
- Felix E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044. MR 187120, DOI 10.1073/pnas.54.4.1041
- Francesco S. De Blasi and Józef Myjak, Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 4, Aiii, A185–A187 (French, with English summary). MR 425703 —, Generic properties of differential equations in Banach space, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 26 (1978), 287-292.
- Klaus Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365–374. MR 350538, DOI 10.1007/BF01171148
- Juan A. Gatica and W. A. Kirk, Fixed point theorems for Lipschitzian pseudo-contractive mappings, Proc. Amer. Math. Soc. 36 (1972), 111–115. MR 306993, DOI 10.1090/S0002-9939-1972-0306993-8
- Dietrich Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258 (German). MR 190718, DOI 10.1002/mana.19650300312
- Tosio Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508–520. MR 226230, DOI 10.2969/jmsj/01940508
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. MR 189009, DOI 10.2307/2313345
- W. A. Kirk, Fixed point theorems for nonlinear nonexpansive and generalized contraction mappings, Pacific J. Math. 38 (1971), 89–94. MR 305160, DOI 10.2140/pjm.1971.38.89 V. Lakshmikantham and S. Leela, On the existence of zeros of Lyapunov-monotone operators, University of Texas, Arlington, Technical Report No. 19, 1975.
- R. H. Martin Jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399–414. MR 318991, DOI 10.1090/S0002-9947-1973-0318991-4
- Robert H. Martin Jr., Nonlinear operators and differential equations in Banach spaces, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1976. MR 0492671
- Mitio Nagumo, Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen, Proc. Phys.-Math. Soc. Japan (3) 24 (1942), 551–559 (German). MR 15180
- Simeon Reich, On fixed point theorems obtained from existence theorems for differential equations, J. Math. Anal. Appl. 54 (1976), no. 1, 26–36. MR 402554, DOI 10.1016/0022-247X(76)90232-8
- Giovanni Vidossich, Existence, uniqueness and approximation of fixed points as a generic property, Bol. Soc. Brasil. Mat. 5 (1974), no. 1, 17–29. MR 397710, DOI 10.1007/BF02584769 —, How to get zeros of nonlinear operators using the theory of ordinary differential equations, Atas Semana Analise Funcional, São Paulo, 1973.
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 341-347
- MSC: Primary 47H15; Secondary 47H10
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545593-8
- MathSciNet review: 545593