A note on invariant subspaces for finite maximal subdiagonal algebras
HTML articles powered by AMS MathViewer
- by Kichi-Suke Saito
- Proc. Amer. Math. Soc. 77 (1979), 348-352
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545594-X
- PDF | Request permission
Abstract:
Let M be a von Neumann algebra with a faithful, normal, tracial state $\tau$ and ${H^\infty }$ be a finite, maximal, subdiagonal algebra of M. Every left- (or right-) invariant subspace with respect to ${H^\infty }$ in the noncommutative Lebesgue space ${L^p}(M,\tau ),1 \leqslant p < \infty$, is the closure of the space of bounded elements it contains.References
- William B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578–642. MR 223899, DOI 10.2307/2373237
- J. Dixmier, Formes linéaires sur un anneau d’opérateurs, Bull. Soc. Math. France 81 (1953), 9–39 (French). MR 59485
- Nobuo Kamei, Simply invariant subspace theorems for antisymmetric finite subdiagonal algebras, Tohoku Math. J. (2) 21 (1969), 467–473. MR 256182, DOI 10.2748/tmj/1178242957
- Shinzô Kawamura and Jun Tomiyama, On subdiagonal algebras associated with flows in operator algebras, J. Math. Soc. Japan 29 (1977), no. 1, 73–90. MR 454650, DOI 10.2969/jmsj/02910073
- Richard I. Loebl and Paul S. Muhly, Analyticity and flows in von Neumann algebras, J. Functional Analysis 29 (1978), no. 2, 214–252. MR 504460, DOI 10.1016/0022-1236(78)90007-1
- M. McAsey, P. Muhly, and K.-S. Saito, Nonselfadjoint crossed products, Hilbert space operators (Proc. Conf., Calif. State Univ., Long Beach, Calif., 1977) Lecture Notes in Math., vol. 693, Springer, Berlin, 1978, pp. 121–124. MR 526541
- Kichi-Suke Saito, The Hardy spaces associated with a periodic flow on a von Neumann algebra, Tohoku Math. J. (2) 29 (1977), no. 1, 69–75. MR 440381, DOI 10.2748/tmj/1178240696
- Kichi-Suke Saito, On non-commutative Hardy spaces associated with flows on finite von Neumann algebras, Tôhoku Math. J. 29 (1977), no. 4, 585–595. MR 463932, DOI 10.2748/tmj/1178240495
- I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401–457. MR 54864, DOI 10.2307/1969729
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 348-352
- MSC: Primary 46L10; Secondary 46L50
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545594-X
- MathSciNet review: 545594