Common fixed points and partial orders
HTML articles powered by AMS MathViewer
- by Arne Brøndsted
- Proc. Amer. Math. Soc. 77 (1979), 365-368
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545597-5
- PDF | Request permission
Abstract:
It is observed that certain theorems on common fixed points may be derived from a theorem on partially ordered sets.References
- Arne Brøndsted, On a lemma of Bishop and Phelps, Pacific J. Math. 55 (1974), 335–341. MR 380343, DOI 10.2140/pjm.1974.55.335
- Arne Brøndsted, Fixed points and partial orders, Proc. Amer. Math. Soc. 60 (1976), 365–366. MR 417867, DOI 10.1090/S0002-9939-1976-0417867-X
- James Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241–251. MR 394329, DOI 10.1090/S0002-9947-1976-0394329-4
- James Caristi and William A. Kirk, Geometric fixed point theory and inwardness conditions, The geometry of metric and linear spaces (Proc. Conf., Michigan State Univ., East Lansing, Mich., 1974) Lecture Notes in Math., Vol. 490, Springer, Berlin, 1975, pp. 74–83. MR 0399968
- R. R. Phelps, Support cones in Banach spaces and their applications, Advances in Math. 13 (1974), 1–19. MR 338741, DOI 10.1016/0001-8708(74)90062-0
- Jerrold Siegel, A new proof of Caristi’s fixed point theorem, Proc. Amer. Math. Soc. 66 (1977), no. 1, 54–56. MR 458403, DOI 10.1090/S0002-9939-1977-0458403-2
- J. D. Weston, A characterization of metric completeness, Proc. Amer. Math. Soc. 64 (1977), no. 1, 186–188. MR 458359, DOI 10.1090/S0002-9939-1977-0458359-2
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 365-368
- MSC: Primary 54H25; Secondary 47H10
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545597-5
- MathSciNet review: 545597