A note on the asymptotic behaviour of the sum of principal radii of curvature on noncompact complete hypersurfaces
HTML articles powered by AMS MathViewer
- by V. I. Oliker
- Proc. Amer. Math. Soc. 77 (1979), 381-384
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545600-2
- PDF | Request permission
Abstract:
It is shown that under certain hypotheses the following conjecture is correct: on a noncompact complete hypersurface in Euclidean space the two conditions below cannot hold simultaneously: (i) the sum of principal radii of curvature is bounded; (ii) the support function is uniformly continuous.References
- Stefan Cohn-Vossen, Kürzeste Wege und Totalkrümmung auf Flächen, Compositio Math. 2 (1935), 69–133 (German). MR 1556908
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443
- Philip Hartman and Aurel Wintner, On the third fundamental form of a surface, Amer. J. Math. 75 (1953), 298–334. MR 55734, DOI 10.2307/2372455
- Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 0244627
- A. L. Verner, Unboundedness of a hyperbolic horn in Euclidean space, Sibirsk. Mat. Ž. 11 (1970), 20–29 (Russian). MR 0262990 —, On the extrinsic geometry of elementary complete surfaces with nonpositive curvature. I, II, Mat. Sb. 74 (116) (1967), 218-240; 75 (117) (1968), 112-139; English transl., Math. USSR Sb. 3 (1967), 205-224; 4 (1968), 99-123.
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 381-384
- MSC: Primary 53C40
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545600-2
- MathSciNet review: 545600