An intuitionistic definition of classical natural numbers
HTML articles powered by AMS MathViewer
- by Vladimir Lifschitz
- Proc. Amer. Math. Soc. 77 (1979), 385-388
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545601-4
- PDF | Request permission
Abstract:
A definition of natural numbers in the theory of species is given which allows us to prove intuitionistically all theorems of classical arithmetic. This provides an alternative to the well-known Gödel negative translation.References
- A. S. Troelstra, Intuitionistic formal systems, Metamathematical investigation of intuitionistic arithmetic and analysis, Lecture Notes in Math., Vol. 344, Springer, Berlin, 1973, pp. 1–96. MR 0444439 V. Lifschitz, A conservative extension of $H{A^c}$ with the E-property, Notices Amer. Math. Soc. 25 (1978), A-362.
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 385-388
- MSC: Primary 03F35
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545601-4
- MathSciNet review: 545601