An axiomatic proof of Stiefel’s conjecture
HTML articles powered by AMS MathViewer
- by John D. Blanton and Clint McCrory
- Proc. Amer. Math. Soc. 77 (1979), 409-414
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545605-1
- PDF | Request permission
Abstract:
Stiefel’s combinatorial formula for the Stiefel-Whitney homology classes of a smooth manifold is proved, by verifying that the classes defined by his formula satisfy axioms which characterize the Stiefel-Whitney classes.References
- Ethan Akin, Stiefel-Whitney homology classes and bordism, Trans. Amer. Math. Soc. 205 (1975), 341–359. MR 358829, DOI 10.1090/S0002-9947-1975-0358829-4
- John D. Blanton and Paul A. Schweitzer, Axioms for characteristic classes of manifolds, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 1, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 349–356. MR 0375339 J. Cheeger, A combinatorial formula for Stiefel-Whitney classes, Topology of Manifolds, J. C. Cantrell and C. H. Edwards (eds.), Markham Publishing Co., Chicago, Ill., 1970, pp. 470-471.
- Richard Goldstein and Edward C. Turner, Stiefel-Whitney homology classes of quasi-regular cell complexes, Proc. Amer. Math. Soc. 64 (1977), no. 1, 157–162. MR 467765, DOI 10.1090/S0002-9939-1977-0467765-1
- Stephen Halperin and Domingo Toledo, Stiefel-Whitney homology classes, Ann. of Math. (2) 96 (1972), 511–525. MR 312515, DOI 10.2307/1970823
- Stephen Halperin and Domingo Toledo, The product formula for Stiefel-Whitney homology classes, Proc. Amer. Math. Soc. 48 (1975), 239–244. MR 365584, DOI 10.1090/S0002-9939-1975-0365584-6
- E. Stiefel, Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten, Comment. Math. Helv. 8 (1935), no. 1, 305–353 (German). MR 1509530, DOI 10.1007/BF01199559
- Laurence R. Taylor, Stiefel-Whitney homology classes, Quart. J. Math. Oxford Ser. (2) 28 (1977), no. 112, 381–387. MR 515729, DOI 10.1093/qmath/28.4.381
- Hassler Whitney, On the theory of sphere-bundles, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 148–153. MR 1338, DOI 10.1073/pnas.26.2.148
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 409-414
- MSC: Primary 55R40; Secondary 57R20
- DOI: https://doi.org/10.1090/S0002-9939-1979-0545605-1
- MathSciNet review: 545605