The infimum of small subharmonic functions
HTML articles powered by AMS MathViewer
- by P. C. Fenton
- Proc. Amer. Math. Soc. 78 (1980), 43-47
- DOI: https://doi.org/10.1090/S0002-9939-1980-0548081-6
- PDF | Request permission
Abstract:
Suppose that u is subharmonic in the plane and that, for some $p > 1,{\underline {\lim } _{r \to \infty }}B(r)/{(\log r)^p} = \sigma < \infty$. It is shown that, given $\varepsilon > 0$, \[ A(r) > B(r) - (\sigma + \varepsilon )\operatorname {Re} \{ {(\log r)^p} - {(\log r + i\pi )^p}\} \] for r outside an exceptional set E, where \[ \underline {\lim } \limits _{x \to \infty } \;\frac {1}{{{{(\log r)}^{p - 1}}}}\int _{E \cap [1,r]} {\frac {{(p - 1){{(\log t)}^{p - 2}}}}{t}\;dt\; \leqslant \frac {\sigma }{{\sigma + \varepsilon }}.} \]References
- P. D. Barry, The minimum modulus of small integral and subharmonic functions, Proc. London Math. Soc. (3) 12 (1962), 445–495. MR 139741, DOI 10.1112/plms/s3-12.1.445
- P. D. Barry, On a theorem of Kjellberg, Quart. J. Math. Oxford Ser. (2) 15 (1964), 179–191. MR 164050, DOI 10.1093/qmath/15.1.179
- W. K. Hayman, The minimum modulus of large integral functions, Proc. London Math. Soc. (3) 2 (1952), 469–512. MR 56083, DOI 10.1112/plms/s3-2.1.469
- Bo Kjellberg, On the minimum modulus of entire functions of lower order less than one, Math. Scand. 8 (1960), 189–197. MR 125967, DOI 10.7146/math.scand.a-10608
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 43-47
- MSC: Primary 31A05
- DOI: https://doi.org/10.1090/S0002-9939-1980-0548081-6
- MathSciNet review: 548081