Sumsets of measurable sets
HTML articles powered by AMS MathViewer
- by Melvyn B. Nathanson
- Proc. Amer. Math. Soc. 78 (1980), 59-63
- DOI: https://doi.org/10.1090/S0002-9939-1980-0548085-3
- PDF | Request permission
Abstract:
Let ${\mathcal {A}_1},{\mathcal {A}_2}, \ldots ,{\mathcal {A}_n}$ be Lebesgue measurable sets of positive real numbers such that ${\inf \mathcal {A}_i} = 0$ for all i. Let $\mu$ denote Lebesgue measure and let ${\mu _ \ast }$ denote inner Lebesgue measure. If $\sum \nolimits _{i = 1}^n \mu ({\mathcal {A}_i} \cap [0,t]) \geqslant \gamma t$ for some $\gamma \leqslant 1$ and all $t \leqslant x$, then \[ {\mu _ \ast }(({\mathcal {A}_1} + {\mathcal {A}_2} + \cdots + {\mathcal {A}_n}) \cap [0,x]) \geqslant \gamma x.\] This generalizes results of Dyson and Macbeath.References
- Emil Artin and Peter Scherk, On the sum of two sets of integers, Ann. of Math. (2) 44 (1943), 138–142. MR 7909, DOI 10.2307/1968760 A. Besicovitch, On the density of the sum of two sequences of integers, J. London Math. Soc. 10 (1935), 246-248.
- Alfred Brauer, On the density of the sum of sets of positive integers. II, Ann. of Math. (2) 42 (1941), 959–988. MR 4839, DOI 10.2307/1968776
- F. J. Dyson, A theorem on the densities of sets of integers, J. London Math. Soc. 20 (1945), 8–14. MR 15074, DOI 10.1112/jlms/s1-20.1.8
- H. Halberstam and K. F. Roth, Sequences. Vol. I, Clarendon Press, Oxford, 1966. MR 0210679 A. Y. Khinchin, Zur additiven Zahlentheorie, Mat. Sb. 39 (1932), 27-34.
- A. Y. Khinchin, Three pearls of number theory, Graylock Press, Rochester, N.Y., 1952. MR 0046372 E. Landau, Die Goldbachsche Vermutung und der Schnirelmannsche Satz, Gottinger Nachr., Math. Phys. Kl. (1930), 255-276. A. M. Macbeath, On measure of sumsets. III. The continuous $(\alpha + \beta )$-theorem, Proc. Edinburgh Math. Soc. (2) 12 (1960/61), 209-211; correction, ibid. 14 (1964/65), 165-166.
- Henry B. Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers, Ann. of Math. (2) 43 (1942), 523–527. MR 6748, DOI 10.2307/1968807 —, Addition theorems, Wiley, New York, 1965. L. G. Schnirelmann, On additive properties of numbers, Izv. Politekh. Inst. Novocherkasske 14 (1930), 3-27; reprinted in Uspehi Mat. Nauk 6 (1939), 9-25.
- L. Schnirelmann, Über additive Eigenschaften von Zahlen, Math. Ann. 107 (1933), no. 1, 649–690 (German). MR 1512821, DOI 10.1007/BF01448914 I. Schur, Über den Begriff der Dichte in der additiven Zahlentheorie, S.-B. Preuss. Akad. Wiss. Math. Phys. Kl. (1936), 269-297. W. Sierpinski, Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math. 1 (1920), 105-111.
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 59-63
- MSC: Primary 10L05; Secondary 28A05
- DOI: https://doi.org/10.1090/S0002-9939-1980-0548085-3
- MathSciNet review: 548085