OSCILLATION OF FIRST-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENTS

YUICHI KITAMURA AND TAKAŠI KUSANO

Abstract. This paper is devoted to the study of the oscillatory behavior of solutions of the first-order nonlinear functional differential equations

\begin{align*}
\dot{x}(t) &= \sum_{i=1}^{N} q_i(t) f_i(x(g_i(t))) \\
&\quad + F(t, x(t), x(g_1(t)), \ldots, x(g_N(t))), \quad (A) \\
\dot{x}(t) + \sum_{i=1}^{N} q_i(t) f_i(x(g_i(t))) \\
&\quad + F(t, x(t), x(g_1(t)), \ldots, x(g_N(t))) = 0. \quad (B)
\end{align*}

First, without assuming that the deviating arguments \(g_i(t), 1 < i < N, \) are retarded or advanced, sufficient conditions are established for all solutions of (A) and (B) to be oscillatory.

Secondly, a characterization of oscillation of all solutions is obtained for equation (A) with \(F \equiv 0 \) and \(g_i(t) > t, 1 < i < N, \) as well as for equation (B) with \(F \equiv 0 \) and \(g_i(t) < t, 1 < i < N. \)

The purpose of this paper is to obtain oscillation criteria for the first order differential equations

\begin{align*}
\dot{x}(t) &= \sum_{i=1}^{N} q_i(t) f_i(x(g_i(t))) \\
&\quad + F(t, x(t), x(g_1(t)), \ldots, x(g_N(t))), \quad (A) \\
\dot{x}(t) + \sum_{i=1}^{N} q_i(t) f_i(x(g_i(t))) \\
&\quad + F(t, x(t), x(g_1(t)), \ldots, x(g_N(t))) = 0, \quad (B)
\end{align*}

where the following conditions are assumed to hold:

(a) \(q_i, g_i \in C[[a, \infty), R], q_i(t) > 0, \) and \(\lim_{t \to \infty} g_i(t) = \infty, 1 < i < N; \)
(b) \(f_i \in C[R, R], f_i \) is nondecreasing, and \(u_f(u) > 0 \) for \(u \neq 0, 1 < i < N; \)
(c) \(F \in C[[a, \infty) \times R^{N+1}, R], \) and \(u_0 F(t, u_0, u_1, \ldots, u_N) > 0 \) for \(u_0 u_i > 0, 1 < i < N. \)

In what follows, by a proper solution of (A) or (B), we mean a function \(x \in C^1[[T_0, \infty), R] \) which satisfies (A) or (B) for all sufficiently large \(t \) and \(\sup \{|x(t)|: t > T\} > 0 \) for any \(T > T_0. \) The standing hypothesis is that equations (A) and (B) do possess proper solutions. A proper solution of (A) or

Received by the editors January 5, 1979.

Key words and phrases. First-order differential equation, nonlinear differential equation, deviating argument, oscillatory solution, oscillation.

© 1980 American Mathematical Society

0002-9939/80/0000-0016/$02.25

64
(B) is called oscillatory if it has arbitrarily large zeros and it is called nonoscillatory otherwise.

The main results of this paper are as follows.

THEOREM 1. Suppose that each \(f_i, 1 < i < N, \) satisfies

\[
\int_{-M}^{\infty} \frac{du}{f_i(u)} < \infty \quad \text{and} \quad \int_{-\infty}^{-M} \frac{du}{f_i(u)} < \infty \quad \text{for any } M > 0. \tag{1}
\]

All proper solutions of (A) are oscillatory if

\[
\sum_{i=1}^{N} \int_{\mathcal{A}_i} q_i(t) \, dt = \infty, \tag{2}
\]

where \(\mathcal{A}_i = \{ t \in [a, \infty): g_i(t) > t \}, \) the advanced part of \(g_i(t). \)

THEOREM 2. Suppose that each \(f_i, 1 < i < N, \) satisfies

\[
\int_{0}^{m} \frac{du}{f_i(u)} < \infty \quad \text{and} \quad \int_{0}^{-m} \frac{du}{f_i(u)} < \infty \quad \text{for any } m > 0. \tag{3}
\]

All proper solutions of (B) are oscillatory if

\[
\sum_{i=1}^{N} \int_{\mathcal{A}_i} q_i(t) \, dt = \infty, \tag{4}
\]

where \(\mathcal{A}_i = \{ t \in [a, \infty): a < g_i(t) < t \}, \) the retarded part of \(g_i(t). \)

All the literature on the oscillation of first-order functional differential equations has been devoted to the case where the deviating arguments involved are retarded or advanced (see, for example, [1]–[10]), and so the above theorems can be covered by none of the previous results.

Proof of Theorem 1. Let \(x(t) \) be a nonoscillatory solution which is eventually positive. There is \(T > a \) such that \(x(t) > 0 \) and \(x(g_i(t)) > 0 \) for \(t > T, \ 1 < i < N. \) By conditions (b) and (c), \(f_j(x(t)) > 0, \ 1 < j < N, \) and \(F(t, x(t), . . .) > 0 \) on \([T, \infty), \) and so from (A), \(x'(t) > 0 \) for \(i > T, \) which implies that the \(f_j(x(t)) \) are nondecreasing on \([T, \infty). \) Let \(i \) be fixed. We divide (A) by \(f_j(x(t)) \) and integrate it on \([T, T'], \ T' > T. \) Using condition (c) and noting that \(f_j(x(g_i(t))) > f_j(x(t)) \) for \(t \in \mathcal{A}_i \cap [T, T'], \) we then have

\[
\int_{T}^{T'} \frac{x'(t)}{f_j(x(t))} \, dt > \int_{T}^{T'} q_i(t) \frac{f_j(x(g_i(t)))}{f_j(x(t))} \, dt \]

\[
> \int_{\mathcal{A}_i \cap [T, T']} q_i(t) \, dt. \tag{5}
\]

Letting \(T' \to \infty \) in (5) and taking (1) into account, we find

\[
\int_{\mathcal{A}_i \cap [T, \infty)} q_i(t) \, dt < \int_{x(T)}^{x(\infty)} \frac{du}{f_j(u)} < \infty.
\]

Since \(i \) is arbitrary, this contradicts (2), and hence (A) cannot have eventually positive proper solutions. Similarly, (A) does not possess eventually negative proper solutions.
Proof of Theorem 2. Let \(x(t) \) be a nonoscillatory solution of (B). Without loss of generality we may suppose that \(x(t) \) is eventually positive. There is \(t_0 > a \) such that \(x(t) > 0 \) and \(x(g_i(t)) > 0 \) for \(t > t_0, 1 < i < N \). Take \(T > t_0 \) so large that \(g_i(t) > t_0 \) for \(t > T, 1 < i < N \). Since \(x'(t) < 0, t > t_0 \) by (B), the \(f_i(x(t)) \) are positive and nonincreasing on \([t_0, \infty) \), so that \(f_i(x(g_i(t))) > f_i(x(t)) \) for \(t \in (t_0, T] \). Proceeding as in the proof of Theorem 1, we obtain from (B)

\[
\int_T^{T'} \frac{-x'(t)}{f_i(x(t))} \, dt > \int_T^{T'} q_i(t) \frac{f_i(x(g_i(t)))}{f_i(x(t))} \, dt
\]

\[
> \int_{\mathbb{R}_+ \cap [T, T']} q_i(t) \, dt. \tag{6}
\]

Letting \(T' \to \infty \) in (6) and using (3), we see that

\[
\int_{\mathbb{R}_+ \cap [T, \infty)} q_i(t) \, dt < \int_{x(\infty)}^{x(T)} \frac{du}{f_i(u)} < \infty
\]

for \(1 < i < N \), which contradicts (4). This completes the proof.

Remark. If \(g_i(t) > t, 1 < i < N \) (resp. \(g_i(t) < t, 1 < i < N \)), then condition (2) (resp. (4)) reduces to

\[
\sum_{i=1}^{N} \int_{\mathbb{R}_+} q_i(t) \, dt < \infty. \tag{7}
\]

Thus Theorem 1 is an extension of a result of Anderson [1, Theorem 3].

We now consider the particular cases of (A) and (B).

\[
x'(t) = \sum_{i=1}^{N} q_i(t) f_i(x(g_i(t))), \tag{A_0}
\]

\[
x'(t) + \sum_{i=1}^{N} q_i(t) f_i(x(g_i(t))) = 0. \tag{B_0}
\]

A sufficient condition for (A_0) and (B_0) to have nonoscillatory solutions is given in the following theorem.

Theorem 3. Let conditions (a) and (b) hold. If

\[
\sum_{i=1}^{N} \int_{\mathbb{R}_+} q_i(t) \, dt < \infty, \tag{8}
\]

then equations (A_0) and (B_0) have nonoscillatory solutions.

Proof. For an arbitrarily given constant \(k > 0 \), consider the integral equation

\[
x(t) = k + \sum_{i=1}^{N} \int_{T}^{t} q_i(s) f_i(x(g_i(s))) \, ds, \tag{9}
\]

where \(T > a \) is chosen so that

\[
\sum_{i=1}^{N} f_i(2k) \int_{T}^{\infty} q_i(s) \, ds < k.
\]
Put $T_0 = \min_{1 \leq i \leq N} \inf_{T \geq T_0} g_i(t)$ and let C denote the locally convex space of all continuous functions $x: [T_0, \infty) \to R$ with the topology of uniform convergence on compact subintervals of $[T_0, \infty)$. Let $X = \{ x \in C: k < x(t) < 2k, t > T_0 \}$. Define the operator $\Phi: X \to C$ by

$$\Phi x(t) = k + \sum_{i=1}^{N} \int_{T}^{t} q_i(s)f_i(x(g_i(s))) \, ds, \quad t > T,$$

$$\Phi x(t) = k, \quad T_0 < t \leq T. \quad (10)$$

It is easy to verify that Φ maps X, which is a closed convex subset of C, continuously into a compact subset of X. Consequently, by the Tychonoff fixed-point theorem, Φ has a fixed point x in X. Obviously, this fixed point $x = x(t)$ satisfies (9) for $t > T$ and hence becomes a nonoscillatory solution of (A0).

Similarly, a nonoscillatory solution of (B0) is obtained as a solution to the integral equation

$$x(t) = 2k - \sum_{i=1}^{N} \int_{T}^{t} q_i(s)f_i(x(g_i(s))) \, ds.$$

It would be of interest to observe that by combining Theorems 1 and 2 with Theorem 3 one easily obtains a characterization of oscillation of (A0) in the advanced case and equation (B0) in the retarded case.

Theorem 4. Suppose that (1) holds and that $g_i(t) > t, 1 < i < N$. Then (7) is a necessary and sufficient condition for all proper solutions of (A0) to be oscillatory.

Theorem 5. Suppose that (3) holds and that $g_i(t) < t, 1 < i < N$. Then (7) is a necessary and sufficient condition for all proper solutions of (B0) to be oscillatory.

Remark. Theorem 5 was first proved by Koplatadze [2].

Example. Consider the equation

$$x'(t) = \frac{|x(t + \sin t)|^{\alpha} \text{sgn} x(t + \sin t)}{t^{\beta} \left[\log(t + \sin t) \right]^{\alpha}}, \quad t \geq 2\pi, \quad (11)$$

where $\alpha > 0$ and β are real constants. The advanced part of $g(t) = t + \sin t$ is $\mathcal{A} = \cup_{k=1}^{\infty} (2k\pi, (2k + 1)\pi)$.

(i) Let $\alpha > 1$. If $\beta < 1$, then

$$\int_{\mathcal{A}} \frac{dt}{t^{\beta} \left[\log(t + \sin t) \right]^{\alpha}} = \sum_{k=1}^{\infty} \int_{2k\pi}^{(2k+1)\pi} \frac{dt}{t^{\beta} \left[\log(t + \sin t) \right]^{\alpha}} = \infty, \quad (12)$$

and so from Theorem 1 it follows that all proper solutions of (11) are oscillatory. If $\beta > 1$, then

$$\int_{2\pi}^{\infty} \frac{dt}{t^{\beta} \left[\log(t + \sin t) \right]^{\alpha}} < \infty,$$

and hence, by Theorem 3, (11) has bounded nonoscillatory solutions. In this
case (11) may have unbounded nonoscillatory solutions; in fact, $x(t) = \log t$ is such a solution when $\beta = 1$.

(ii) Let $0 < \alpha < 1$ and $\beta = 1$. Then (12) holds, but (11) has a nonoscillatory solution $x(t) = \log t$. This example shows that the conclusion of Theorem 1 is not true if condition (1) is violated.

A similar example illustrating Theorem 2 could easily be provided.

Bibliography

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, NAGASAKI UNIVERSITY, NAGASAKI, JAPAN

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, HIROSHIMA UNIVERSITY, HIROSHIMA, JAPAN