Monotone operator functions on arbitrary sets
HTML articles powered by AMS MathViewer
- by William F. Donoghue
- Proc. Amer. Math. Soc. 78 (1980), 93-96
- DOI: https://doi.org/10.1090/S0002-9939-1980-0548091-9
- PDF | Request permission
Abstract:
We give a new proof of a result of Chandler which shows that a monotone operator function defined on a set J admits an analytic continuation to the upper and lower half-planes, and that this continuation is a Pick function, real and regular on the convex hull of J.References
- Julius Bendat and Seymour Sherman, Monotone and convex operator functions, Trans. Amer. Math. Soc. 79 (1955), 58–71. MR 82655, DOI 10.1090/S0002-9947-1955-0082655-4
- J. D. Chandler Jr., Extensions of monotone operator functions, Proc. Amer. Math. Soc. 54 (1976), 221–224. MR 394271, DOI 10.1090/S0002-9939-1976-0394271-4
- Chandler Davis, A Schwarz inequality for convex operator functions, Proc. Amer. Math. Soc. 8 (1957), 42–44. MR 84120, DOI 10.1090/S0002-9939-1957-0084120-4
- Chandler Davis, Notions generalizing convexity for functions defined on spaces of matrices, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 187–201. MR 0155837
- William F. Donoghue Jr., Monotone matrix functions and analytic continuation, Die Grundlehren der mathematischen Wissenschaften, Band 207, Springer-Verlag, New York-Heidelberg, 1974. MR 0486556
- Karl Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), no. 1, 177–216 (German). MR 1545446, DOI 10.1007/BF01170633
- Marvin Rosenblum and James Rovnyak, Restrictions of analytic functions. I, Proc. Amer. Math. Soc. 48 (1975), 113–119. MR 399924, DOI 10.1090/S0002-9939-1975-0399924-9
- Ju. L. Šmul′jan, Monotone operator functions on a set consisting of an interval and a point, Ukrain. Mat. Ž. 17 (1965), no. 1, 130–136 (Russian). MR 0188807
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 93-96
- MSC: Primary 47B15; Secondary 30H05, 47A60
- DOI: https://doi.org/10.1090/S0002-9939-1980-0548091-9
- MathSciNet review: 548091