There are no $Q$-points in Laver’s model for the Borel conjecture
HTML articles powered by AMS MathViewer
- by Arnold W. Miller
- Proc. Amer. Math. Soc. 78 (1980), 103-106
- DOI: https://doi.org/10.1090/S0002-9939-1980-0548093-2
- PDF | Request permission
Abstract:
It is shown that it is consistent with ZFC that no nonprincipal ultrafilter on $\omega$ is a Q-point (also called a rare ultrafilter).References
- Gustave Choquet, Deux classes remarquables d’ultrafiltres sur N, Bull. Sci. Math. (2) 92 (1968), 143–153 (French). MR 236860
- Jussi Ketonen, On the existence of $P$-points in the Stone-Čech compactification of integers, Fund. Math. 92 (1976), no. 2, 91–94. MR 433387, DOI 10.4064/fm-92-2-91-94
- Kenneth Kunen, Some points in $\beta N$, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 3, 385–398. MR 427070, DOI 10.1017/S0305004100053032 —, P pt’s in random real extensions (to appear).
- Richard Laver, On the consistency of Borel’s conjecture, Acta Math. 137 (1976), no. 3-4, 151–169. MR 422027, DOI 10.1007/BF02392416
- A. R. D. Mathias, A remark on rare filters, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vols. I, II, III, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975, pp. 1095–1097. MR 0373898
- A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977), no. 1, 59–111. MR 491197, DOI 10.1016/0003-4843(77)90006-7 —, 0# and the P-point problem (to appear). J. Roitman, P-pts in iterated forcing extensions (to appear).
- Edward L. Wimmers, The Shelah $P$-point independence theorem, Israel J. Math. 43 (1982), no. 1, 28–48. MR 728877, DOI 10.1007/BF02761683
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 103-106
- MSC: Primary 03E35; Secondary 03E05
- DOI: https://doi.org/10.1090/S0002-9939-1980-0548093-2
- MathSciNet review: 548093