A note on weakly mixing functions
HTML articles powered by AMS MathViewer
- by S. Glasner
- Proc. Amer. Math. Soc. 78 (1980), 124-126
- DOI: https://doi.org/10.1090/S0002-9939-1980-0548098-1
- PDF | Request permission
Abstract:
Every almost periodic function is the uniform limit of polynomials of weakly mixing functions. If $\mathcal {B}$ and $\mathcal {F}$ are uniformly closed translation invariant algebras of purely weakly mixing functions and almost periodic functions respectively, and $\mathcal {A}$ is the algebra generated by $\mathcal {B}$ and $\mathcal {F}$, then every weakly mixing function in $\mathcal {A}$ belongs to $\mathcal {B}$.References
- Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49. MR 213508, DOI 10.1007/BF01692494
- Robert Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969. MR 0267561
- R. Ellis and S. Glasner, Pure weak mixing, Trans. Amer. Math. Soc. 243 (1978), 135–146. MR 494022, DOI 10.1090/S0002-9947-1978-0494022-5
- A. W. Knapp, Functions behaving like almost automorphic functions, Topological Dynamics (Symposium, Colorado State Univ., Ft. Collins, Colo., 1967) Benjamin, New York, 1968, pp. 299–317. MR 0238294
- Reuven Peleg, Some extensions of weakly mixing flows, Israel J. Math. 9 (1971), 330–336. MR 281184, DOI 10.1007/BF02771683 W. A. Veech, Private communication.
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 124-126
- MSC: Primary 54H20; Secondary 28D05
- DOI: https://doi.org/10.1090/S0002-9939-1980-0548098-1
- MathSciNet review: 548098