On the Chern classes and the Euler characteristic for nonsingular complete intersections
HTML articles powered by AMS MathViewer
- by Vicente Navarro Aznar
- Proc. Amer. Math. Soc. 78 (1980), 143-148
- DOI: https://doi.org/10.1090/S0002-9939-1980-0548103-2
- PDF | Request permission
Abstract:
It is shown that Hirzebruch’s result on the Chern classes of a complete intersection of nonsingular hypersurfaces in general position in ${{\mathbf {P}}_N}({\mathbf {C}})$, is also valid for any nonsingular complete intersection. Then relations between Euler characteristic, class and Milnor number are pointed out.References
- Aldo Andreotti and Theodore Frankel, The second Lefschetz theorem on hyperplane sections, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 1–20. MR 0271106
- Bang-yen Chen and Koichi Ogiue, Some implications of the Euler-Poincaré characteristic for complete intersection manifolds, Proc. Amer. Math. Soc. 44 (1974), 1–8. MR 332806, DOI 10.1090/S0002-9939-1974-0332806-6
- Bang-yen Chen and Koichi Ogiue, Complete intersection manifolds with extremal Euler-Poincaré characteristics, Proc. Amer. Math. Soc. 50 (1975), 121–126. MR 404275, DOI 10.1090/S0002-9939-1975-0404275-X
- Bang-Yen Chen, Euler characteristics and codimensions of complete intersections, Proc. Amer. Math. Soc. 71 (1978), no. 1, 13–14. MR 495826, DOI 10.1090/S0002-9939-1978-0495826-0
- John Ewing and Suresh Moolgavkar, Euler characteristics of complete intersections, Proc. Amer. Math. Soc. 56 (1976), 390–391. MR 399116, DOI 10.1090/S0002-9939-1976-0399116-4
- Marc Giusti, Sur les singularités isolées d’intersections complètes quasi-homogènes, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 3, xi, 163–192 (French, with English summary). MR 460709
- Gert-Martin Greuel and Helmut A. Hamm, Invarianten quasihomogener vollständiger Durchschnitte, Invent. Math. 49 (1978), no. 1, 67–86 (German). MR 511096, DOI 10.1007/BF01399511
- Helmut Hamm, Lokale topologische Eigenschaften komplexer Räume, Math. Ann. 191 (1971), 235–252 (German). MR 286143, DOI 10.1007/BF01578709
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 0448362
- Friedrich Hirzebruch, Der Satz von Riemann-Roch in Faisceau-theoretischer Formulierung: einige Anwendungen und offene Fragen, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, Erven P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1956, pp. 457–473 (German). MR 0087187
- F. Hirzebruch, Topological methods in algebraic geometry, Third enlarged edition, Die Grundlehren der mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. MR 0202713
- Steven L. Kleiman, The enumerative theory of singularities, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 297–396. MR 0568897
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612 F. Severi, Sulle intersezioni delle varietá algebriche e sopra i loro caratteri e singolarita proiettive, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 52 (1902), 61-118.
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 143-148
- MSC: Primary 57R20; Secondary 14F45, 14M10, 32B10, 32B30
- DOI: https://doi.org/10.1090/S0002-9939-1980-0548103-2
- MathSciNet review: 548103