Incidence rings with self-duality
HTML articles powered by AMS MathViewer
- by Joel K. Haack
- Proc. Amer. Math. Soc. 78 (1980), 165-169
- DOI: https://doi.org/10.1090/S0002-9939-1980-0550486-4
- PDF | Request permission
Abstract:
An artinian ring R is said to have self-duality if there is a Morita duality between the categories of left and right finitely generated R-modules. Here it is shown that the incidence ring of a finite preordered set over a division ring has self-duality. This is accomplished in part by calculating their injective modules.References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974. MR 0417223
- Maurice Auslander, María Inés Platzeck, and Idun Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 (1979), 1–46. MR 530043, DOI 10.1090/S0002-9947-1979-0530043-2
- Goro Azumaya, A duality theory for injective modules. (Theory of quasi-Frobenius modules), Amer. J. Math. 81 (1959), 249–278. MR 106932, DOI 10.2307/2372855
- Victor Camillo, Distributive modules, J. Algebra 36 (1975), no. 1, 16–25. MR 573061, DOI 10.1016/0021-8693(75)90151-9
- P. M. Cohn, Free rings and their relations, London Mathematical Society Monographs, No. 2, Academic Press, London-New York, 1971. MR 0371938
- Kent R. Fuller, On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115–135. MR 246917
- Kent R. Fuller, Rings of left invariant module type, Comm. Algebra 6 (1978), no. 2, 153–167. MR 472908, DOI 10.1080/00927877808822238
- K. R. Fuller and Joel Haack, Rings with quivers that are trees, Pacific J. Math. 76 (1978), no. 2, 371–379. MR 498683
- Joel K. Haack, Self-duality and serial rings, J. Algebra 59 (1979), no. 2, 345–363. MR 543255, DOI 10.1016/0021-8693(79)90132-7
- Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965. MR 0202787
- Kiiti Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 (1958), 83–142. MR 96700
- Bernard Roux, Modules injectifs indécomposables sur les anneaux artiniens et dualité de Morita, Séminaire P. Dubreil (26ème année: 1972/73), Algèbre, Secrétariat Mathématique, Paris, 1973, pp. Exp. No. 10, 19 (French). MR 0407085
- Hiroyuki Tachikawa, Duality theorem of character modules for rings with minimum condition, Math. Z. 68 (1958), 479–487. MR 94377, DOI 10.1007/BF01160363
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 165-169
- MSC: Primary 16A49; Secondary 16A35
- DOI: https://doi.org/10.1090/S0002-9939-1980-0550486-4
- MathSciNet review: 550486