Incidence rings with self-duality
Author:
Joel K. Haack
Journal:
Proc. Amer. Math. Soc. 78 (1980), 165-169
MSC:
Primary 16A49; Secondary 16A35
DOI:
https://doi.org/10.1090/S0002-9939-1980-0550486-4
MathSciNet review:
550486
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: An artinian ring R is said to have self-duality if there is a Morita duality between the categories of left and right finitely generated R-modules. Here it is shown that the incidence ring of a finite preordered set over a division ring has self-duality. This is accomplished in part by calculating their injective modules.
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, Springer-Verlag, New York-Heidelberg, 1974. Graduate Texts in Mathematics, Vol. 13. MR 0417223
- Maurice Auslander, María Inés Platzeck, and Idun Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 (1979), 1–46. MR 530043, DOI https://doi.org/10.1090/S0002-9947-1979-0530043-2
- Goro Azumaya, A duality theory for injective modules. (Theory of quasi-Frobenius modules), Amer. J. Math. 81 (1959), 249–278. MR 106932, DOI https://doi.org/10.2307/2372855
- Victor Camillo, Distributive modules, J. Algebra 36 (1975), no. 1, 16–25. MR 573061, DOI https://doi.org/10.1016/0021-8693%2875%2990151-9
- P. M. Cohn, Free rings and their relations, Academic Press, London-New York, 1971. London Mathematical Society Monographs, No. 2. MR 0371938
- Kent R. Fuller, On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115–135. MR 246917
- Kent R. Fuller, Rings of left invariant module type, Comm. Algebra 6 (1978), no. 2, 153–167. MR 472908, DOI https://doi.org/10.1080/00927877808822238
- K. R. Fuller and Joel Haack, Rings with quivers that are trees, Pacific J. Math. 76 (1978), no. 2, 371–379. MR 498683
- Joel K. Haack, Self-duality and serial rings, J. Algebra 59 (1979), no. 2, 345–363. MR 543255, DOI https://doi.org/10.1016/0021-8693%2879%2990132-7
- Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965. MR 0202787
- Kiiti Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 (1958), 83–142. MR 96700
- Bernard Roux, Modules injectifs indécomposables sur les anneaux artiniens et dualité de Morita, Séminaire P. Dubreil (26e année: 1972/73), Algèbre, Exp. No. 10, Secrétariat Mathématique, Paris, 1973, pp. 19 (French). MR 0407085
- Hiroyuki Tachikawa, Duality theorem of character modules for rings with minimum condition, Math. Z. 68 (1958), 479–487. MR 94377, DOI https://doi.org/10.1007/BF01160363
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A49, 16A35
Retrieve articles in all journals with MSC: 16A49, 16A35
Additional Information
Keywords:
Morita duality,
incidence rings,
injective modules
Article copyright:
© Copyright 1980
American Mathematical Society