On $L^{1}$ isomorphisms
HTML articles powered by AMS MathViewer
- by Michael Cambern
- Proc. Amer. Math. Soc. 78 (1980), 227-228
- DOI: https://doi.org/10.1090/S0002-9939-1980-0550500-6
- PDF | Request permission
Abstract:
Let $({X_1},{\Sigma _1},{\mu _1})$ and $({X_2},{\Sigma _2},{\mu _2})$ be two $\sigma$-finite measure spaces. We show that any isomorphism T of the Banach space ${L^1}({X_1},{\Sigma _1},{\mu _1})$ onto the Banach space ${L^1}({X_2},{\Sigma _2},{\mu _2})$ which satisfies $\left \| T \right \|\;\left \| {{T^{ - 1}}} \right \| < 2$ induces a transformation of the underlying measure spaces.References
- D. Amir, On isomorphisms of continuous function spaces, Israel J. Math. 3 (1965), 205โ210. MR 200708, DOI 10.1007/BF03008398
- Michael Cambern, On isomorphisms with small bound, Proc. Amer. Math. Soc. 18 (1967), 1062โ1066. MR 217580, DOI 10.1090/S0002-9939-1967-0217580-2
- H. B. Cohen, A bound-two isomorphism between $C(X)$ Banach spaces, Proc. Amer. Math. Soc. 50 (1975), 215โ217. MR 380379, DOI 10.1090/S0002-9939-1975-0380379-5 N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1958.
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- John Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459โ466. MR 105017, DOI 10.2140/pjm.1958.8.459
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 227-228
- MSC: Primary 46E30; Secondary 46B25
- DOI: https://doi.org/10.1090/S0002-9939-1980-0550500-6
- MathSciNet review: 550500