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ON RECURRENCE OF A RANDOM WALK IN THE PLANE

KAI LAI CHUNG AND TORGNY LINDVALL

Abstract. The purpose of this note is to establish a sufficient condition for

recurrence of a random walk (Sn) in R2. It follows from it that if S„/n1^2 is

asymptotically normal then we have recurrence.

Let Xx, X2,. . . be independent, identically distributed random variables in

Rk, k > 1, with common distribution F, and let for n > 1, S„ = 2" X¡, S0 = 0. The

random walk S = (SJ™ has a point of recurrence at x if, for every e > 0,

P(\Sn  -   X|  < £ i.O.)  =   1. (1)

It is well known that the set of recurrence points is either empty or equals the

smallest closed additive group containing the support of F, see [1] or [3, §8.3]. In

the latter case we say that S is recurrent. Also well known is the following

criterion: S is recurrent if and only if

f P(\Sn\ <e)=oo (2)
o

for some e > 0, see the references above, and (2) holds if and only if

_    r i
lim    I   Re--— dt = oo (3)
rM   JA        1 - rf(t)

for all neighborhoods A of 0, where / is the characteristic function of F: the

criterion (3) is Theorem 3 in [1].

The study of recurrence has been carried out, to a large extent, by using (3) and

related criteria. For example, in one dimension E[X¡] = 0 implies recurrence,

which is rather easily deduced from (3). In [2] a probabilistic (combinatorial) proof
p

is given that the weaker assumption S„/n^> 0 is sufficient for recurrence. In that

paper it is also claimed that if, in R2, Sn/nx/2 is asymptotically normal, which is

the case when E[X¡] = 0 (zero vector) and F^A^2] < oo, then we have recurrence.

However, the argument indicated for this result in [2], and also in [3, Problem 14, p.

274], is misleading to say the least. This was discovered by students in Chung's

class in 1977 and was first corrected by him then: it is the main purpose of this

note to settle this matter.

For y = (y„ . . . ,yk) £ Rk, k > 2, we let \y\ = max,<l<t|y/| throughout.
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Proposition. Consider a random walk S = (Sn)ô in R2. If there exists an

increasing, continuous function h > 0 on some interval [0, c] such that ¡c0(h(u)/ u)du

= oo and

lim  P(\Sn\ < x • a'/2) > x2 • fl(x) (4)
n—»oo

for each x G [0, c], then S is recurrent.

Proof. Since x2 • h(x) is uniformly continuous on [0, c], and since the functions

infn>/tP(|S'J < x • m1/2) increase with x, the inequality in (4) holds uniformly in x

in the sense that for each e > 0 there exist «(e) such that

inf    P(\S„\ <x-a'/2) >x2-h(x) - e (5)
n>n(e)

for all x G [0, c]. Furthermore, for integers m > 1 we have

f P(\Sn\<m)<4m2-fl P(\S„\< 1).
o o

This inequality was proved in [3, Lemma 1, p. 268] for R ' with the constant 2m on

the right side. The same argument yields the result for R 2 with the constant (2m)2

due to our definition of S„ indicated above. By virtue of (2), it is hence sufficient to

prove

lim   m~22 P(\S„\ <m) = oo.
m—»oo 0

Fix C > 0 arbitrarily large. Take B > 0 so large that

h(u)r ^du>c.
JB-i       u

Let e > 0 be so small that

inf    F(|SJ <x-a'/2) >x2-fl(x)/2
n>n(e)

for B ~ ' < x < c, which is possible because of (5) and the monotonicity of

x2 • h(x). Now, if a > «(e) and F-1 < m ■ n~i/2 < c, we have P(\S„\ < m) > m2 ■

fl_I • h(m ■ n~i/2)/2, so

oo

lim   «j-22 P(\Sn\ <m) >   hm  m'2• 2 P(\SJi < m)
m-,00 0 m-»oo n>n(t)

B-'<mn~'/2<c

1     ,.        çBhJ   h(m-x~x'2)   J
> -    hm    I -^-'- dx

1 /-«Tu

-   hm    I
Z    m-»oo   Jm2c~

= 1    r* fl(x-'/2) ±[_ re    h(u)

2 Jr-2        x JR-i     u
du > C.

Since C is arbitrary, 2" F(|5„| < 1) = oo and hence S is recurrent.    □

If S„/n1/2 is asymptotically normal, the Proposition renders S recurrent: simply

let c = 1 and let fl(x) be constant = vninM<x g(y), where g is the relevant normal

density.
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It may be noticed that for every ß < 2 there is a F such that F[|A"(|^] < oo but S

is transient. Namely, let X¡ = (X¡, X") where the variables X¡, X" are independent,

stable and symmetric with index a, ß < a < 2: such a distribution has continuous

density and all moments of order < a finite, see [4, Lemma 2, p. 545]. With

S; = Sí*/, we obtain

p(\s„\ < i) = p(\s;\ < i)2 = p(|s„'-«-»/-l < n'1'")2

= P(\X;\ <n~x/a)2 < 2-y«-2/a,

where y is the supremum of the density of F on the interval [-1, 1]. Hence,

So'FOS'J < 1) is finite, S is transient.

With a function h as in the Proposition, if lim^^PdSj < x • n) > x • h(x) for

each x G [0, c] for a one-dimensional random walk S, then S is recurrent. This

sufficient condition covers the result by Chung and Ornstein, but also, for example,

the case when F is a Cauchy distribution such that S„/n is distributed like A",: then

h(x) = a suitable constant will do.

Since h is allowed to tend to 0 as x \ 0, the question arises whether we can find

a distribution with slightly heavier tails than that of the Cauchy distribution so that

P(\S„\ < x • n) -> 0 for all x > 0 as n —> oo, and still have recurrence: it turns out

that a symmetric distribution on the integers with P(X¡ = k) = y ■ log(l + \k\)

• (1 + k2)~x, y a normalizing constant, is such a distribution. To prove this,

Fourier methods seem inevitable.

In order to illuminate that the condition fc0(h(u)/u)du = oo is crucial, let A > 0

be increasing and such that fc0(h(u)/u)du < oo for some c > 0 and suppose that

lim
n—»oo

sup   P(\Sn\ <xnx/2)/x2-h(x)
0<x<c

< 00

for a random walk S in R 2. Then S is transient, as is readily verified.
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