Homotopy and uniform homotopy. II
HTML articles powered by AMS MathViewer
- by Allan Calder and Jerrold Siegel
- Proc. Amer. Math. Soc. 78 (1980), 288-290
- DOI: https://doi.org/10.1090/S0002-9939-1980-0550515-8
- PDF | Request permission
Abstract:
An elementary proof of the Bounded Lifting Lemma is given, together with a proof that homotopy and uniform homotopy do not agree for maps into compact spaces with infinite fundamental groups even though they can agree for maps into a noncompact space with infinite fundamental group.References
- Allan Calder and Jerrold Siegel, Homotopy and uniform homotopy, Trans. Amer. Math. Soc. 235 (1978), 245–270. MR 458416, DOI 10.1090/S0002-9947-1978-0458416-6
- Allan Calder and Jerrold Siegel, Kan extensions of homotopy functors, J. Pure Appl. Algebra 12 (1978), no. 3, 253–269. MR 501952, DOI 10.1016/0022-4049(87)90005-3
- A. Dold, Lectures on algebraic topology, Die Grundlehren der mathematischen Wissenschaften, Band 200, Springer-Verlag, New York-Berlin, 1972 (German). MR 0415602
- Albrecht Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223–255. MR 155330, DOI 10.2307/1970341
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 288-290
- MSC: Primary 55R99; Secondary 55U35
- DOI: https://doi.org/10.1090/S0002-9939-1980-0550515-8
- MathSciNet review: 550515