A new criterion for $p$-valent functions
HTML articles powered by AMS MathViewer
- by R. M. Goel and N. S. Sohi
- Proc. Amer. Math. Soc. 78 (1980), 353-357
- DOI: https://doi.org/10.1090/S0002-9939-1980-0553375-4
- PDF | Request permission
Abstract:
In this paper we consider the classes ${K_{n + p - 1}}$ of functions $f(z) = {z^p} + {a_{p + 1}}{z^{p + 1}} + \cdots$ which are regular in the unit disc $E = \{ z:|z| < 1\}$ and satisfying the condition \[ \operatorname {Re} \left ( {{{({z^n}f)}^{(n + p)}}/{{({z^{n - 1}}f)}^{(n + p - 1)}}} \right ) > (n + p)/2,\] where p is a positive integer and n is any integer greater than $- p$. It is proved that ${K_{n + p}} \subset {K_{n + p - 1}}$. Since ${K_0}$ is the class of p-valent functions, consequently it follows that all functions in ${K_{n + p - 1}}$ are p-valent. We also obtain some special elements of ${K_{n + p - 1}}$ via the Hadamard product.References
- I. S. Jack, Functions starlike and convex of order $\alpha$, J. London Math. Soc. (2) 3 (1971), 469–474. MR 281897, DOI 10.1112/jlms/s2-3.3.469
- R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755–758. MR 178131, DOI 10.1090/S0002-9939-1965-0178131-2
- Stephan Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109–115. MR 367176, DOI 10.1090/S0002-9939-1975-0367176-1
- Toshio Umezawa, Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8 (1957), 869–874. MR 90654, DOI 10.1090/S0002-9939-1957-0090654-9
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 353-357
- MSC: Primary 30C45
- DOI: https://doi.org/10.1090/S0002-9939-1980-0553375-4
- MathSciNet review: 553375