A divergent, two-parameter, bounded martingale
HTML articles powered by AMS MathViewer
- by Lester E. Dubins and Jim Pitman
- Proc. Amer. Math. Soc. 78 (1980), 414-416
- DOI: https://doi.org/10.1090/S0002-9939-1980-0553386-9
- PDF | Request permission
Abstract:
An example is given of a divergent, uniformly bounded martingale $X = \{ {X_t}:t \in T\}$ where the index t ranges over the set T of pairs of positive integers with the usual coordinatewise ordering.References
- R. Cairoli, Une inégalité pour martingales à indices multiples et ses applications, Séminaire de Probabilités, IV (Univ. Strasbourg, 1968/69) Lecture Notes in Mathematics, Vol. 124, Springer, Berlin, 1970, pp. 1–27 (French). MR 0270424
- R. Cairoli and John B. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975), 111–183. MR 420845, DOI 10.1007/BF02392100
- Jean Dieudonné, Sur un théorème de Jessen, Fund. Math. 37 (1950), 242–248 (French). MR 43176, DOI 10.4064/fm-37-1-242-248
- Lester E. Dubins and Jim Pitman, A pointwise ergodic theorem for the group of rational rotations, Trans. Amer. Math. Soc. 251 (1979), 299–308. MR 531981, DOI 10.1090/S0002-9947-1979-0531981-7
- Allan Gut, Convergence of reversed martingales with multidimensional indices, Duke Math. J. 43 (1976), no. 2, 269–275. MR 407969
- K. Krickeberg, Convergence of martingales with a directed index set, Trans. Amer. Math. Soc. 83 (1956), 313–337. MR 91328, DOI 10.1090/S0002-9947-1956-0091328-4
- J. Neveu, Discrete-parameter martingales, Revised edition, North-Holland Mathematical Library, Vol. 10, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. Translated from the French by T. P. Speed. MR 0402915
- R. T. Smythe, Sums of independent random variables on partially ordered sets, Ann. Probability 2 (1974), 906–917. MR 358973, DOI 10.1214/aop/1176996556
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 414-416
- MSC: Primary 60G42; Secondary 60G44
- DOI: https://doi.org/10.1090/S0002-9939-1980-0553386-9
- MathSciNet review: 553386